Theoretical Evaluation of Neutron-nucleus Scattering Parameters from Experimental Data in the $6 \leq A < 60$ Mass Region

A. Aleksejevs, S. Barkanova, J. Tambergs, T. Krasta, W. Waschkowskia, and K. Knopfa

Nuclear Research Center, 31 Miera Str., LV-2169, Salaspils, Latvia
a Physik Department der Technischen Universität München, FRM-Reaktorstation Garching,
D-85747 Garching

Z. Naturforsch. 53 a, 855–862 (1998); received September 21, 1998

Systematic calculations of the neutron-nucleus scattering parameters at several neutron energies $E_i < 2$ keV have been performed for 37 isotopes (6Li, . . . , 59Co) in the mass region of $6 \leq A < 60$, using the large compilation of experimental neutron-nucleus scattering data obtained in Garching. In the first stage of these calculations, the s-wave potential scattering radius R_0, the scattering lengths b_{coh}, b_{γ}, and the bound state parameters $(E_b, \Gamma_r, \Gamma_n, g I_n^0)$ have been calculated for each isotope, employing the general least squares fit (GLSQF) for the experimental and the corresponding theoretical values of the total neutron-nucleus cross sections $\sigma_{\text{tot}}(E_i)$ at several energies E_i, absorption cross sections $\sigma_{\text{abs}}(E_0)$ and of the coherent scattering lengths b_{coh}. The theoretical expressions for these parameters were deduced on the basis of the usual S-matrix formalism with no assumption about the particular shape of the optical model potential. In the second stage of our calculations, the spherical Fiedeldey-Frahn optical potential was employed for the pure theoretical description or the above mentioned neutron-nucleus scattering characteristics. The results obtained have been analyzed and compared with the values deduced from measurements.

PACS 34.50B

Reprint requests to Dr. W. Waschkowski; Fax: +49 89 289 12162, E-mail: wwasch@physik.tu-muenchen.de