Evidence of a Cationic Substitution Domain in Lithium-Manganese Spinels

C. B. Azzoni, M. C. Mozzati, A. Palearia, V. Massarottib, M. Binib, and D. Capsonib

INFM-Department of Physics “A. Volta” of the University, via Bassi 6, I-27100 Pavia
a INFM-Department of Materials Science of the University, via Cozzi 53, I-20126 Milano
b Department of Physical Chemistry of the University and CSTE-CNR, via Taramelli 16, I-27100 Pavia

Z. Naturforsch. 53 a, 771–778 (1998); received June 22, 1998

Magnetic susceptibility measurements and electron paramagnetic resonance spectra of samples prepared from the reactive system MnO/Li\textsubscript{2}CO\textsubscript{3} with different starting Li cationic fraction \(x\) are analyzed, taking into account the structural and compositional information provided by x-ray diffraction. Parent phases, as Mn\textsubscript{2}O\textsubscript{3}, Mn\textsubscript{3}O\textsubscript{4} and Li\textsubscript{2}MnO\textsubscript{3}, arise together with the lithium-manganese spinel as a result of Li-deficiency or Li-excess with respect to the \(x = 0.33\) composition pertinent to the stoichiometric LiMn\textsubscript{2}O\textsubscript{4} spinel. The data show that the spinel phase can sustain a partial Li-Mn substitution in the cation sites, according to compositional models described, for \(x > 0.33\), by Li1+\(_{y}\)Mn3+\(_{1-y}\)Mn4+\(_{2y}\)O\textsubscript{4} (Li-rich spinel) and, for \(x < 0.33\), by Li1+\(_{-y}\)Mn2+\(_{y}\)Mn3+\(_{1+y}\)Mn4+\(_{-y}\)O\textsubscript{4} (Li-poor spinel). Paramagnetic resonance data of the Li-poor spinel phase are analyzed to discuss the possible oxidation state of Mn in the tetrahedral site.

\textit{Key words:} Stoichiometric LiMn\textsubscript{2}O\textsubscript{4} Spinel Phase, Magnetic Susceptibility, Electron Paramagnetic Resonance.

Reprint requests to V. Massarotti; Fax: +39 382 507575, E-mail: vimas@chifis.unipv.it