Studies of Successive Phase Transitions and Molecular Motions in $[\text{Mg(H}_2\text{O)}_6][\text{SiF}_6]$ by 1,2H and 19F NMR

Junko Kimura, Takeshi Fukase, Motohiro Mizuno, and Masahiko Suhara
Department of Chemistry, Faculty of Science, Kanazawa University, Kanazawa 920-1192, Japan.
Z. Naturforsch. 53 a, 453–458 (1998); received December 31, 1997

The successive phase transitions of $[\text{Mg(H}_2\text{O)}_6][\text{SiF}_6]$ were studied by measuring 2H NMR spectra. The quadrupole coupling constant \hat{Q}/h and asymmetry parameter η changed drastically at each transition temperature. 1,2H and 19F NMR T_1 were measured for this compound to study the relation between the molecular motions and the successive phase transitions. The activation energy E_a and the pre-exponential factor τ_0 for the reorientation of $[\text{SiF}_6]^{2-}$ were estimated as 28 kJmol^{-1} and $6.0 \times 10^{-14} \text{ s}$, and those of the 180° flip of H_2O as 33 kJmol^{-1} and $4.0 \times 10^{-14} \text{ s}$. These two motions occur rapidly even in phase V. For the reorientation of $[\text{Mg(H}_2\text{O)}_6]^{2+}$, $E_a = 62 \text{ kJmol}^{-1}$ and $\tau_0 = 1.1 \times 10^{-16} \text{ s}$ were obtained from the simulation of 2H NMR spectra. The jump rate of this motion is of the order of $10^4 - 10^6 \text{ s}^{-1}$ in phase II. These results suggest that the successive phase transitions are closely related to the motion of $[\text{Mg(H}_2\text{O)}_6]^{2+}$.

Reprint requests to Dr. M. Mizuno; E-mail: mizuno@wriron1.s.kanazawa-u.ac.jp