Powder Zeeman NQR Study on the Absorption Forms for Nuclear Spin 5/2*

O. Ege, S. Nishijima, E. Kimura, H. Akiyama, S. Hamai, H. Negita

Department of Physics, Faculty of Education, Miyazaki University, Gakuen-kibanadai, Miyazaki 889-21, Japan
a Department of Chemistry, College of Education, Akita University, Tegata Gakuen-machi 1-1, Akita 010, Japan
b Computer Center, Hiroshima University of Economics, Gion, Asaminami, Hiroshima 731-01, Japan

For nuclei which have a nuclear spin of 5/2 and exhibit a small asymmetry parameter of the electric field gradient (η) at the nuclear site, line shapes of the Powder Zeeman NQR (PZNQR) spectra based on the transition between the energy levels $m_l = \pm 1/2$ and $\pm 3/2$ (the lower frequency line) were studied by means of computer simulations and experiments. (i) When an η value is very small (type 1; $\eta = 0$), the line shape exhibits two shoulders like the style of the American football player. (ii) While an η value is small (type 2; $0 < \eta < \text{around 0.01}$) but not zero, the line shape has two small peaks which are symmetrically located on the shoulders, as in the case of the small η type of spin 3/2. (iii) When an η value is not small (type 3; around 0.01 < η), the line shape has two symmetrical dips in stead of the peaks, which are also similar to the case of not small η type of spin 3/2. As the η value increases from around 0.01, the two dips grow and reach the maximum at the η value of 0.349, and then become smaller and obscure in the range of η larger than 0.349.

The observations of PZNQR spectra were performed for several compounds including the 127I and/or 121Sb nuclei to estimate the η values, and gave the results as follows: very small for 127I (207.683 and 209.133 MHz, at 77 K) in SnI$_4$; very small for 127I (176.496 and 177.438 MHz, at 77 K) in Gal$_3$; small for 127I (265.102 MHz, at 77 K) in CH$_3$I; 0.33 for 127I (247.69 MHz, at 77 K) in C$_2$H$_5$I; 0.27 for 121Sb (58.23 MHz, at 290 K) in SbCl$_3$. The estimated η values were compared to those obtained from the frequencies of two NQR lines for spin 5/2. They were in good agreement with each other for the small region of η, though somewhat large disagreements were seen in the cases of not small η values.

Key words: NQR; Nuclear Quadrupole Resonance; Zeeman effect; Powder Zeeman NQR; Spin 5/2.

Reprint requests to Dr. O. Ege; Fax: +81-985-58-2892.