Electric Quadrupole Interactions of the Short-Lived β-Emitter 12N in Insulator Crystals (12N Implanted in Single Crystal TiO$_2$)*

T. Minamisono1, K. Sato, H. Akai, S. Takedaaaa, Y. Maruyama, K. Matsuta, M. Fukuda, T. Miyake, A. Morishita, T. Izumikawaa, and Y. Nojiria

1 Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560, Japan
a Department of Chemistry, same Graduate School

Z. Naturforsch. 53a, 293–300 (1998); received December 30, 1997

The electronic structure of nitrogen atoms as impurities in an ionic TiO$_2$ crystal has been investigated by analyzing electric field gradients (EFGs) measured by use of short-lived β-emitting 12N implanted following nuclear reactions. Conventional β-NMR and its modification, suitable for the detection of quadrupole effects in the NMR spectra, were used for the investigation of hyperfine interactions of 12N located in substitutional sites of O atoms and interstitial sites in the crystal. In order to deduce absolute values of the EFGs from the obtained eqQ/l, the quadrupole moment of 12N has been determined from the NMR detection of 12N implanted in BN(hexagonal) crystal. Here the EFG at the N atom in BN was measured by detecting the FT-NMR of 14N in the crystal. The EFGs in TiO$_2$ are compared with the theoretical predictions based on the ab $initio$ band-structure calculation in the framework of the KKR method.

* Reprint requests to T. Minamisono. E-mail: minamiso@hep.sci.osaka-u.ac.jp