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A symbolic-computation-based method, which has been
newly proposed, is considered for a (2+ 1)-dimensional gen-
eralization of shallow water wave equations and a coupled
set of the (2+ 1)-dimensional integrable dispersive long wave
equations. New sets of soliton-like solutions are constructed,
along with solitary waves.

1. (24 1)-dimensional Generalized Shallow Water
Wave Equation

In order to exactly solve for a (2+ 1)-dimensional

generalization of the shallow water wave equations
[1, 2]

Uy + Uy — 3uu,—3u,u,, =0, (1)

we introduce a symbolic-computation-based method
newly proposed [3, 4], so as to see that

ux, pt)=A0. wliz(x, .1+ ¥x, 31, (2

where A4 is a non-zero constant, and ¥(x, y,t),
z(x, y, t) and w(z) are differentiable functions.

Then, the requirement is that the result be an ordi-
nary differential equation for w(z), and z(x, y, t) be
obtained correspondingly. We substitute (2) back into
(1), and equate to zero the coefficients of the terms
with the highest power of the differential coefficients of
z(x, y, 1), ie., of the z§ z, terms, so that

2
—6AW' W + WP =0 — w(z)=—;ln{z). (3)
After a study on the vanishing coefficients of the
w’ terms, we try
¥(x,y0)=¥(), (4)
and conjecture that

z(x, »nty=1 +e;'x+{J|_\-_,|, (5)
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where y # 0 is a constant while Q(y, t) is a differen-
tiable function.

After symbolic manipulations for the expression of
Q(y, t), etc., we obtain a set of the soliton-like solu-
tions for (1) as follows:

1X+0() -yt
2

where @ (t) = ¥ (r) — y and @ (y) are arbitrary differen-
tiable functions. Solitary waves are a special case with
©(y)=ay + band & (t) = ¢, where a, b and c are con-
stants easy to be determined. This solution should be

u(x,y,t)=—y- lanhI: :| +&(t), (6)

2. (24 1)-dimensional Integrable Dispersive
Long Wave Equations

The coupled set
ul’y = —Nxx— %(uz]x)ﬂ [7}
qr=_(“’f+u+uxy]x (8)

has been used to model wide channels or open seas
and was studied in [5-7], where n(x, y, r) represents
the amplitude of a surface wave which propagates in
the (x, y) plane with the horizontal velocity u(x, y, t).
Using the aforementioned method, we have done
preliminary work aiming at some solutions of (7) and
(8) [4]. Recently, we have performed extensive work,
which is going to be published elsewhere, with sample
solutions (including solitary waves). Here we briefly
outline the new families of soliton-like solutions:

Family I: 9)
4D (x, ,1)=6- {tanh [G-xwu.;)-lnzty, :)] +1} ’
6 Z.(n1)
n I e
o (x, y,1)= > [T,(y, t) Z(y,r)]

10)

.Sechz[ﬂ-xw(y,;)—lnz(y,r)]Al’

where the differentiable functions Z(y, ) # 0, ¥ (y, t)
and their derivatives, along with the constant 6 # 0,
satisfy

{—9222 Y-+ I, ¥ 4+0? I + XYL —2,2,=0,

5%, +Z'Y,—Z5,=0.
=y ¥ ¥ (11]
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Family II:
u' (x, y, )=0(y) (12)

- {tanh [Q(J:)"’c"' ¥ (y,)—In Z(y, IJ] +1},

2

n"(x,y,0)= 2_;{}] 5 sech? [9(}9"‘ +‘P(12'J)—1n I(y.t)]
. {eel,\‘l x+ ¥y @y{},)

+Z(30)0,(+x- 0 Z (10,
+O()Z(y,0)¥(.0-0()Z,y1]-1,

(13)

where the differentiable functions @ (y) #0, Z (y,t) #0,
¥ (y,t) and their derivatives satisfy

{—922—2'P,+z,=0,

(14)
z2(0%),+%,2,+2*¥,~22,=0.
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Family III: (15)
u(x, y, t)= O (1)- {lanh [?_{ﬂ_{;—l_n‘bﬂ]+ 1}‘
,,',IIHJ [X, ¥, f) = =1 , (16)

where O (t) #0 and @(r) # 0 are arbitrary, differen-
tiable functions. In this family, 4™ = u(x, t) is inde-
pendent of y, and #'/™ is a constant.

Those families give us new information on the
motion of the surface waves on open seas and wide
channels.
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