Fluorescence and Phosphorescence Anisotropy Spectra of Indole in Poly (Vinyl Alcohol) Film at Room Temperature

A. Kawski, I. Gryczyński, and Z. Gryczyński

1. Introduction

Spectroscopic studies of indole are of interest when investigating the nature of the environment of tryptophan residues in model polypeptides and proteins [1]. As shown experimentally [2] and theoretically [3], the first and second excited states of indole are of L_A and L_B character, respectively (the Platt labels), i.e. the two neighbouring levels, S_1 and S_2, have different symmetries. The transfer of indole from non-polar to polar fluid media leads to a pronounced shift of the S_2 and S_1 states [5-9], primarily because the L_B state in absorption and the L_A state in emission are located outside the indole ring plane, close to the perpendicular direction.

2. Experimental

Isotropic PVA films were prepared at room temperature by introducing indole into aqueous PVA solution through methanol [11-13]. Anisotropic PVA films were obtained by stretching at about 350 K. Indole was purified by HPLC. The fluorescence spectrum and the steady-state anisotropy spectra of indole were measured as described by Lakowicz et al. [14]. Since the phosphorescence lifetime was of the order of 0.1 s, the phosphorescence spectrum was obtained using a simple phosphorescence. The excitation wavelength for the emission spectra measurements was 298 nm. The steady-state fluorescence and phosphorescence anisotropy spectra were measured for different excitation wavelengths, λ_{exc}, at a constant wavelength of observation, i.e. 320 nm and 435 nm, respectively.

3. Results and Discussion

The emission spectra of indole in an isotropic PVA film at 20°C are shown in Figure 1. The ratio of the room temperature phosphorescence maximum at 435 nm to the fluorescence maximum at 320 nm is about 0.05. The background in the phosphorescence measurements was < 1%. The fluorescence spectrum (290 - 400 nm) is structureless, as in polar solvents [5].

Reprint requests to Prof. A. Kawski.

Fig. 1. Emission spectra of indole in PVA film at 20°C.
while the phosphorescence spectrum (400 – 520 nm) is slightly structured.

The fluorescence excitation anisotropy spectrum of indole in isotropic and stretched (stretch ratio \(R\% \approx 12 \); for the definition see [12]) PVA film (Fig. 2) is similar to that obtained in vitrified solutions [14]. The characteristic minimum is located at 289 nm. The phosphorescence anisotropy is negative and independent of the excitation wavelengths in the range of 284 – 300 nm (Figure 2). In an isotropic PVA film the limiting emission anisotropy is only \(r_0 = -0.12 \). Such a value of \(r_0 \) results from limited rotational motions [15], which means that in PVA films treated as rigid media the indole molecules have little freedom for rotational motions. Such motions occurring in the PVA polymer can be effectively eliminated by stretching the film [16]. Upon the elimination of such restricted motions, the measured values of the limiting anisotropy of the molecule investigated are close to \(r_0 = -0.2 \) (Figure 2).

The \(\text{1L}_0 \) and \(\text{1L}_\text{s} \) transition directions in indole are through to make an angle of 90° and are located in the plane of the molecule [10]. The result obtained of the phosphorescence anisotropy clearly shows that the \(T_1 \rightarrow S_0 \) transition should be located out of the plane of the indole ring, close to the perpendicular direction.