Local Structure and Okada’s Empirical Relation for the Internal Mobility of Cations in Molten Alkali Nitrates

Junko Habasaki

Department of Electronic Chemistry, Tokyo Institute of Technology at Nagatsuta, Nagatsuta 4259, Midori-ku, Yokohama 227, Japan

Z. Naturforsch. 44a, 595–596 (1989); received March 6, 1989

The empirical relation
\[b_i = (V - V_{0i})^{-1} A_i \exp(-E_i/R\ T) \]
for the internal mobility \(b_i \) of cations \(i \) in mixtures of molten alkali nitrates, where \(V \) is the molar volume of the mixture, is compared with MD simulations. For pure LiNO₃ and NaNO₃ it is found that \((V - V_{0i})^{-1} \) is proportional to the concentration of oxygens in the first coordination shells of the cations \(i \).

From countercurrent electromigration [1] measurements of internal mobilities \(b_i \) of cations \(i \) in molten binary and ternary alkali nitrate mixtures, the empirical relation
\[b_i = (V - V_{0i})^{-1} A_i \exp(-E_i/R\ T) \] (1)
has been derived by Okada and coworkers [2–11]. This relation involves the molar volume \(V \) of the mixture and a parameter \(V_{0i} \) which depends on the type of cation \(i \). In such mixtures the number of oxygen atoms per macroscopic unit volume is
\[n = 3 \ N_N / V, \] (2)
where \(N_N \) is Avogadro’s number.

According to (1), positive (negative) values of \(V_{0i} \) tell us that the concentration of oxygens is greater (smaller) than \(n \) in the microscopic regions which are decisive for the magnitude of \(b_i \). If these regions are considered to be the first oxygen coordination shells around the cation \(i \), the relation
\[3 \ N_N / (V - V_{0i}) \approx N_{f1}/v_{f1} \] (3)
should hold, where \(N_{f1} \) is the oxygen atom content of these shells and \(v_{f1} \) their volume.

It is the aim of this note to check the validity of (3) by inserting empirical values of \(V - V_{0i} \) and \(N_{f1}/v_{f1} \). Reprint requests to Dr. Junko Habasaki, Department of Electronic Chemistry, Tokyo Institute of Technology at Nagatsuta 4259, Midori-ku, Yokohama 227, Japan.

0932-0784 / 89 / 0600-0595 $ 01.30/0. – Please order a reprint rather than making your own copy.

The values \(V - V_{0i} \) were calculated for several molar volumes of the mixtures, as shown in Table 3.

Table 1. The systems so far studied.

<table>
<thead>
<tr>
<th>(M_i)</th>
<th>Na</th>
<th>K</th>
<th>Rb</th>
<th>Cs</th>
<th>Na, K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>[2]</td>
<td>[8]</td>
<td>[2]</td>
<td>[3]</td>
<td>[10]</td>
</tr>
</tbody>
</table>

Table 2. Parameters \(A_i, E_i, V_{0i} \).

<table>
<thead>
<tr>
<th>(M_i)</th>
<th>(A_i \times 10^{11}) m³ V⁻¹ s⁻¹ mol⁻¹</th>
<th>(E_i) kJ mol⁻¹</th>
<th>(V_{0i}) cm³ mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>[2]</td>
<td>2.84</td>
<td>17.80</td>
</tr>
<tr>
<td>Na</td>
<td>[2]</td>
<td>4.94</td>
<td>19.71</td>
</tr>
<tr>
<td>Rb</td>
<td>[10]</td>
<td>3.95</td>
<td>18.00</td>
</tr>
</tbody>
</table>

* The small temperature dependence of \(V_{0i} \) observed for the system is neglected here.

Table 3. Values of \(V - V_{0i} \) for several \(V \) values of the mixtures. \(V \) and \(V_{0i} \) in cm³ mol⁻¹.

<table>
<thead>
<tr>
<th>(V)</th>
<th>Li</th>
<th>Na</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>20.3</td>
<td>20.8</td>
<td>34.5</td>
</tr>
<tr>
<td>50</td>
<td>25.3</td>
<td>25.8</td>
<td>39.5</td>
</tr>
<tr>
<td>60</td>
<td>35.3</td>
<td>35.8</td>
<td>49.5</td>
</tr>
</tbody>
</table>

* The \(V_{0i} \) value of [3] was used.
The volume of the first oxygen coordination shell was taken to be

$$v_i = \frac{4}{3} \pi (r_2^3 - r_1^3),$$

(4)

where \(r_1\) and \(r_2\) are the distances from the cation where the corresponding \(g(r)\) crosses unity for the first and second time, respectively [14].

An MD simulation of molten LiNO₃ at 550 K [12] gave \(r_{1Li} = 1.65 \text{Å}, \ r_{2Li} = 2.29 \text{Å}\) and \(N_{1Li} = 4.2\). These data coincide well with the data obtained by X-ray diffraction and neutron diffraction. When using these values, \(N_{1Li}/v_{1Li}\) turns out to be \(1.33 \times 10^{23} \text{ cm}^{-3}\). On the other hand, the left hand side of (3) becomes \(1.26 \times 10^{23} \text{ cm}^{-3}\) when using the \(V_{0Li}\) value in Table 2.

An MD simulation of molten NaNO₃ has been carried out at 650 K [15]. The values of \(r_{1Na}, r_{2Na}\) and \(N_{1Na}\) were found to be 2.05 Å, 2.93 Å and 5.40, respectively. With these the value \(7.79 \times 10^{22} \text{ cm}^{-3}\) was obtained for the right hand side of (3), while \(8.36 \times 10^{22} \text{ cm}^{-3}\) was obtained for the left hand side of (3).

This coincidence seems to prove that \(b_i\) is indeed proportional to the concentration of oxygens in the first oxygen coordination shell around the cation \(i\). A definite answer, however, can only be given when (3) has also been checked for mixtures of alkali nitrate melts. This shall be done in a future study.