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We propose an explicit finite difference scheme to solve
operator equations of motion in quantum mechanics and
in a quantum scalar field theory.

PACS numbers: 05.50. + g, 02.60. + y, 03.70. + k

Bender and Sharp [1, 2] have proposed a differencing
scheme to solve the operator equations in quantum me-
chanics and in quantum field theory. The main property of
this method is that the canonical equal-time commutation
relations (ETCR’s) are preserved. On the other hand Mon-
crief [3] pointed out the computational difficulties of the
Bender-Sharp differencing scheme due to its implicit
character. To avoid these problems, Moncrief has proposed
an explicit scheme which also preserves the ETCR’s. Later
Vazquez [4] suggested two new explicit finite difference
schemes, which are related to the one of Moncrief.

The purpose of this paper is to propose an explicit
scheme, which is accurate to order t*, r being the fixed
time increment. This scheme represents an improvement of
the above explicit schemes because they are accurate only
to order 2.

Let us consider a one-dimensional quantum system

H=p2+V(g). (1)
The Heisenberg equations of motion are

dg(n/dr=p(). dp(n/di=f(q (D) (2)
which also can be written

d*q(n/de? = f(q(1)). 3)
flg)=—dV/dg. and the operators p(r) and g(r) must
satisfy the commutation relation

[q).p(]=1i. (4)

To solve this problem in the interval [0, T], we divide it
into N intervals of length r and define g, and p, as the
operators g and pattimer=nr.
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The explicit scheme we propose is the following:
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and our problem is to iterate (5)—(6) with the initial
condition

{qos Po) (90, Pl =1. (7)

Also we may reduce the Egs. (5)—(6) to one equation
which only contains the operators g,,:
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This equation is a discrete analogue of (3) and must be
iterated with the initial condition

i90-q1] suchthat [g.q]=iTt, (9)

where the commutation relation is obtained from (5), with
n=10,and (7).
Let us see the features of the scheme.

1) Accuracy: From calculus [5] we can see that the left side
of (8) is a discretization of the second derivative with
accuracy of order t* Thus the present scheme is more
accurate than the explicit ones of [3] and [4].

2) The ETCR's: Let us define, at each step nt, the average
position and momentum operators
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Gps1— 2§, + G, .
At = Tl - G (13)

If the initial condition is {§g, po} such that [§y, fg] =1 it is
easy to check. in (11) and (12). that

[Gn-Pul=1. (14)

In the same way. when the initial condition is expressed
only in terms of the operators §,,:

§-1.Go, suchthat [§_,.g0]=1iT1,
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we can see from (13) that
[Gn- Gnar]=iz. (15)
Thus in our scheme the ETCR’s are preserved. at each
step. by the averaged operators §, and j,.

3) Our scheme is not selfstarting, since to iniciate the itera-
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then from (19)=(20) we get the equations
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tion we need to know either the operators {gy. py. p_y. P_a| (23)
or qy.4qg. g-1.q->, if the computations are made using
(5)—(6) or (8)., respectively. However. the data operators  which preserve the ETCR’s for the average operators:
are either {gq.py! or {go.q;|. Let us analyze this problem
in terms only of the operators ¢,. In a similar way it can be ~ O = S PP
made for the operators ¢, and p,. We made the simple [EF, Gfl=0; WfHE=05 [8f, W= h O (4
linear interpolation .
And also we have the discreteness effect
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That allows us to iterate (8).
Now we apply our scheme to a nonlinear quantum
scalar field theory in two-dimensional Minkowski space:

¢,=1, H—-P,— f(P)= (18)

We discretize (18) by using a mesh of sizes A=t and
Ax = h as follows:
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which shows that the accuracy of the scheme is of order 7*,
Finally. the problem of starting the iteration can be
solved in the same way as before.
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where @' and JI' are the field operators at the point
(t=nt,x=jh.

Now let us define in each point of the lattice the average
operators:

- 1
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nr= —2(1417" Il — =1y

(21)
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