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Three choices o f th ree  rate  coefficients out o f the six 
coefficients occurring in the general second order rate 
equation for interacting antipodes (e.g. enantiom ers) can 
provide b istability  w ith incom plete demixing. Once choice 
o f two rate coefficients can provide b istability  with com 
plete demixing.

In this note we consider stationary states o f m ixtures o f 
interacting antipodes (e.g. enantiom ers) w ith the mole 
fractions .v and 1 — x  and look for sim plest m odels o f in
com plete dem ixing (x =t= 0 , 1/ 2 , 1) and com plete demixing 
(x =  0, 1). W e assum e second order rate equations to be 
valid;

(1)

(2)

d [n x ] /d /  =  e +  n [ / j  x  + f 2(1 — x)]

+ n2[gxx2 + g 2x( \  - x ) + g 3( 1 - x ) 2] ,

d [n (1 -  x ) ] /d /  =  e +  n [ / ,  (1 -  x) + f 2 x]

+  «2 [öri ( l  ~ x ) 2 + g 2x(\  - * )  +  S'3*2]<

where / is the tim e and n the total am ount of the 
antipodes. If suitable, n can also be defined as an am ount 
per unit volume or unit area. The coefficients e, f 2 and g 3 
are assum ed to be positive because negative values would 
m ean that particles are d isappearing at a rate that is 
independent o f the num ber o f particles present. This is 
clearly im possible if  there are no particles, and if  there are 
particles it would be possible but it would not comply with 
the mass law. T able 1 shows possible reactions which 
correspond to the rate coefficients.

In the stationary state, n and x rem ain constant in time. 
By adding (1) and (2) and pu tting  dn/ dt  =  0 one obtains

2 e + n( f } + f 2) +  n2[g] + g 3- 2 ( g x- g 2 + g3) x ( l

and by subtracting ( 1) from  (2 ) and putting

d [n (1 — 2 x ) ] /d /  =  0

one obtains
(1 - 2 x) [ ( / ,  - f 2) +  n ( g x - g 3)] = 0.

x)] =  0 ,
(3)

The value o f n in case o f m onostability (a?m > x  
results from (3):

n  m  =
./1 + h

9 \ +  92 + Q 3
1 + V'

4 g ( f f l  + 92 +  # 3) 
( / ,  + /2)2

(4)

1/2)

• (5)
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In case o f bistability  («B, x  4= 1/2) it results from  (4):

«b = -  (/1  ~/2)/(0i -0 3 )-  
Insertion of (6 ) into (3) gives

4 x ( l  — x) = A ( e , f ] , f 2, g ] , g 2, g 3),
where

A =
9 \ ~ 9 2  + 9}

e ( g \ - g i ) 2 f i(9\  — 9})
(/1  - f i ) 7 / 1 - / 2

+  9  3

(6)

(7)

(8)

A system defined by the values o f the rate coefficients is 
bistable if  n B > 0 and 0 <  A < 1.

The evolution tow ards stationary was studied in [1] for 
cases where n, e, f 2, g \ , g 2 and g3 are constant, the con
stancy of n beig procured by allowing / ,  to vary with x 
according to (3). In these evolutions a param eter

< 7 = 1 -
9 \ ~ 9 i + 93

(9)

remains constant while x  and / ,  vary during  the evolution. 
It was shown that for q < 0 and q > 1 the final state is 
racemic (i.e. x  =  1/2) w hile for 0 <  q < 1 the final state is 
non-racemic (i.e. x  +  1/2).

In the following we use the functions

Q u ( e , f \ , f 2 , g \ , g 2, gi )  and Q z ( e , f \ , f 2, g i , g 2, g 3)
instead of q(n,e, f 2, g\,  g2, g 3). Qu and (?B are ob tained  
by elim inating n in (9) by m eans o f (5) and (6 ), respec
tively. It turns out that

Qö — \ -  A (10)

W hen putting nM =  n B and using (5) and (6 ) one obtains 
the same relation betw een the rate coefficients as when 
putting A = 1 and using (8). Therefore

/7M =  «b for Q m = Q b = 0. (11)

In term s o f QM and Q B, a system defined by the values o f 
the rate coefficients is bistable if «B >  0 and 0 <  0 b <  F it 
is m onostable if  nM > 0 and Q u  <  0 or QM >  1, and it can 
be in a stationary state if  nM > 0 and 0 <  Q M < 1. T he 
latter state, however, is unstable against small deviations o f 
x  from 1/2. F igure 1 shows the dependence o f x  on Q M 
and Qb .

Table 1. Possible reactions and the corresponding rate 
coefficients (positive and negative). T he enantiom ers L  
and D can be interchanged, k, 1=0 ,  1 , 2 , . . .  . X  and Y  sum 
up other substances possibly involved in the reactions.

X  -► Y + k D  + ( 1 +1) L e > 0
L X  —* Y + k D  + (2 + 1) L f \  > 0
L + X  -> Y + k D /1 < 0
D + X  -> Y + k D  + (\ + I) L f2  > 0

2 L + X  ^  Y + k D + (3 + I) L 9 1 >  0
2 L  + X  -> Y + k D  + ( 0 , \ )  L g  1 <  0

L +  D + X ^  Y + k D + (2 + 1) L g 2 > 0
L +  D + X -» Y + k D 92 <  0

2 D + X - *  Y + k D  + ( 1 +1) L 93 > 0
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Table 2. 3-coefficient m odels o f bistability  with incom plete dem ixing ( f x is negative, g x, e , f 2 and are positive).
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Coefficients Q b «B Q m «M n M =  n B for 
Qn= Q B =  0

«M  = 2 « Bfor 
Q m =  Q b ~  1
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Fig. 1. M ole fractions x vs. Ö m ( ^ / i  , / 2> 0i >0 2 « 03) and 
0 b ( ^ / i  > /2 > 9 \ ' 92'  9i)- The figure relates to real systems 
if the corresponding values o f «M and n B are positive. Solid 
lines: Stationary stable states. D ashed line: Stationary 
unstable states. D otted  lines: N on-stationary  states.

At Q u  =  0 b  =  0, p rovided =  nB >  0, a system can 
pass in a quasi stationary way from  m onostability  to 
bistability or back, due for exam ple to a slow change o f 
the tem perature  or the am ount o f a subrate involved in 
the reactions, such as X  in T able 1. Even at a very slow 
change, howeveer, tem porary  non-stationarities will occur 
while the system passes the b ifurcation  point because there

one has d .v /d 0 B= ±  oo. K ondepudi and coauthors [2 -5 ] , 
who also included small biased influences and noise, have 
studied this behaviour near the b ifurcation  point.

In [2] and [3] a m odel with four rate coefficients, 
( e , f \ , g \ , g 2) was considered, where e and f \  are positive 
and varying while g x and g 2 are negative and constant. In 
future discussions of bistability  with incom plete dem ixing 
it m ight be useful to consider m odels w ith a m inim al 
num ber o f rate coefficients. From  (8) and 0 <  A < 1 it is 
evident that in such m odels at least th ree  o f the six rate 
coefficients must be non-zero.

In Table 2, out o f the twenty possible coefficient triplets 
the three triplets allowing for bistability  are listed together 
with their corresponding values of (?B, « B, Q M, nM, nM = n B 
for (?m  =  (?b =  0, a n d n M =  2 / iB for 0 m  =  0 b = 1- O ther 
triplets do not belong in the table because they do not 
comply with the requirem ents nB >  0 and 0 <  Qb < 1.

C om plete demixing, i.e. Q B = 1 can be realized for the 
doublet / i ,  g x with /]  <  0 and g x > 0. T his doublet provides 
the simplest model for stationarv m onostrophic states and 
may explain many o f the bistabilities occurring in the 
biosphere o f the earth. Helicity conservation in the sexual 
replication o f DNA is an example. U sually only one o f the 
two stationary states exists on earth. Both states exist in the 
case o f the land snail partu la  suturalis m entioned in [1],

A quasi stationary transition th rough the bifurcation  
point has not yet been observed in nature  or the chem ical 
or biological laboratory. Also an exam ple o f  F ran k ’s in 
herently non-stationary model (the doub let f x, g 2 with 

/ ]  >  0 and g 2 < 0) is not known because opposite  enan- 
tiom ers usually do not interact, i.e. g 2 =  0.

The island M oorea with its different helicities o f the 
land snail partula in the different valleys o f  the island can 
be considered as a m odel o f the earth  or som e o ther birth  
place o f life at an early stage. W hen one day the po p u la 
tions of the valleys will have m ixed, only one helicity o f 
partu la will be left. T oday nobody can p red ict which one it 
will be. This final state o f the island will correspond to the 
present state of the m olecular biosphere o f the earth  as 
regards helicity.
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