A Note on the ${ }^{14} \mathrm{~N}$ Electric Field Gradient Tensors in Incommensurate $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathbf{l}_{2} \mathrm{ZnCl}_{4}\right.$

J. Dolinšek and R. Blinc

J. Stefan Institute, E. Kardelj University of Ljubljana, Ljubljana, Yugoslavia
Z. Naturforsch. 42a, 305-306 (1987); received December 12, 1986

The ${ }^{14} \mathrm{~N}$ electric field gradient tensors of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2} \mathrm{ZnCl}_{4}$ have been re-determined in the paraelectric phase at $26^{\circ} \mathrm{C}$ and in the incommensurate phase at $16^{\circ} \mathrm{C}$. The results in the incommensurate phase show the "non-local" nature of the ${ }^{14} \mathrm{~N}$ EFG tensor interaction.

Tetramethylammonium tetrachlorozincate $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2} \mathrm{ZnCl}_{4}$ (TMATC-Zn) belongs to the group of $\mathrm{A}_{2} \mathrm{BX}_{4}$ crystals. It first transforms with decreasing temperature from the normal (P) to the incommensurate (I) phase and then exhibits at lower temperatures a sequence of commensurate (C) phases. In a recent paper [1] we reported on the ${ }^{14} \mathrm{~N}$ EFG tensors of TMATC-Zn in the paraelectric phase at $26^{\circ} \mathrm{C}$

Reprint requests to J. Dolinšek and Prof. Dr. R. Blinc, J. Stefan Institute, 61000 Ljubljana, Jamova 39, Yugoslavia.

Table 1. ${ }^{14} \mathrm{~N}$ EFG tensors in the crystal fixed frame in paraelectric TMATC-Zn expressed in frequency units (kHz), i.e. multiplied by $3 e Q / 2 h$.
$\mathbf{T}_{0}(1,2)=\left|\begin{array}{ccr}19.5 & 0 & 0 \\ 0 & 42.5 & \pm 4 \\ 0 & \pm 4 & -62\end{array}\right| ; ~\left(e^{2} q Q / h\right)_{1,2}=41.4 \mathrm{kHz}$
$\mathbf{T}_{0}(3,4)=\left|\begin{array}{ccc}-78 & 0 & 0 \\ 0 & 89 & \pm 48.5 \\ 0 & \pm 48.5 & -11\end{array}\right| ; \quad \begin{aligned} & \left(e^{2} q Q / h\right)_{3.4}=72.4 \mathrm{kHz} \\ & \eta_{3.4}=0.436\end{aligned}$
and in the I phase at $16^{\circ} \mathrm{C}$. In that paper the b and c rotations did not correspond to precise rotations about the b and c crystallographic axes, but instead those two axes were tilted for a small angle ($\theta \approx 4^{\circ}$) with respect to the rotation axes. This lead to a slight misinterpretation of the ${ }^{14} \mathrm{~N}$ EFG tensors which we would like to correct here.
In the paraphase, which has the space group Pmen, there are four physically and two chemically nonequivalent ${ }^{14} \mathrm{~N}$ sites in the unit cell. The ${ }^{14} \mathrm{~N}$ nuclei lie on the $b-c$ mirror plane. The two groups of chemically nonequivalent ${ }^{14} \mathrm{~N}$ nuclei can be divided into two sub-groups of physically n̨onequivalent ${ }^{14} \mathrm{~N}$ nuclei. These two subgroups are related by the glide symmetry which requires the b and c principal axes of the two corresponding physically nonequivalent ${ }^{14} \mathrm{~N}$ EFG tensors to be rotated symmetrically about the a principal axis, where a lies normal to the $b-c$ mirror plane.
One thus expects in the paraphase four different ${ }^{14} \mathrm{~N}$ EFG tensors, where each of the two physically nonequivalent EFG tensors is of the form

$$
\mathbf{T}_{0}^{ \pm}=\left|\begin{array}{ccr}
T_{0}^{a a} & 0 & 0 \tag{1}\\
0 & T_{0}^{b b} & \pm T_{0}^{b c} \\
0 & \pm T_{0}^{b c} & T_{0}^{c c}
\end{array}\right|, \quad T>T_{\mathrm{I}}
$$

The symmetry of the particular physically nonequivalent tensor in the I phase is described in [1], where it is shown that each tensor element $T^{(\mu)}$ can be expanded in powers of the nuclear displacements from their high temperature equilibrium sites as:
$T^{(\mu)}(x)=T_{0}^{(\mu)}+T_{1^{\prime}}^{(\mu)} \cos \left[\Phi(x)-\Phi_{1}^{(\mu)}\right]$

$$
\begin{equation*}
+\frac{1}{2} T_{2^{\prime}}^{(\mu)}+\frac{1}{2} T_{2^{\prime \prime}}^{(\mu)} \cos 2\left[\Phi(x)-\Phi_{2}^{(\mu)}\right]+\ldots \tag{2}
\end{equation*}
$$

Table 2. ${ }^{14} \mathrm{~N}$ EFG tensors in kHz in the I phase of TMATC-Zn expressed in the crystal fixed a, b, c frame:
$\mathbf{T}(x)=\mathbf{T}_{0}+\mathbf{T}_{1^{\prime \prime}} \cos \left[\Phi(x)-\boldsymbol{\Phi}_{1}\right]+\frac{1}{2} \mathbf{T}_{2^{\prime}}+\frac{1}{2} \mathbf{T}_{2^{\prime \prime}} \cos 2\left[\Phi(x)-\boldsymbol{\Phi}_{2}\right]$

		$\mathrm{T}_{1}{ }^{\prime \prime}$			\mathbf{T}_{2}			$\mathrm{T}_{2^{\prime \prime}}$			$\boldsymbol{\Phi}_{1}$		$\Phi_{2}=0$
$i=1,2$	\|r $\begin{array}{r}0 \\ 6 \\ 12\end{array}$	6 0 0	12 0 0	0 0 0	0 2 \pm	0 ± 0.5 -0.5	$\left\lvert\, \begin{array}{r}-5 \\ 0 \\ 0\end{array}\right.$	0 9 4	0 4 -4	$\left\lvert\, \begin{gathered}0 \\ 45^{\circ} \\ 45^{\circ}\end{gathered}\right.$	45° 0 0	45° 0 0	
$i=3,4$	0 5.5 7	5.5 0 0	7 0 0	\|r $\begin{array}{r}-1 \\ 0 \\ 0\end{array}$	0 1.5 ± 5	0 ± 5 1	2 0 0	0 2.5 5	\| $\begin{array}{r}0 \\ 5 \\ -3\end{array}$	$\left\lvert\, \begin{gathered}0 \\ 45^{\circ} \\ 45^{\circ}\end{gathered}\right.$	45° 0 0	45° 0 0	

0340-4811/87/0300-0305 \$ 01.30/0. - Please order a reprint rather than making your own copy.

Figs. 1 a, b, c. Angular dependence of the quadrupole splitting of the ${ }^{14} \mathrm{~N}$ spectra in TMATC-Zn at $26{ }^{\circ} \mathrm{C}>T_{\mathrm{I}}$. The full line is the theoretical fit.

Figs. 2a, b, c. Angular dependence of the incommensurate frequency distribution singularities in the ${ }^{14} \mathrm{~N}$ spectra of TMATC-Zn in the I phase at $16^{\circ} \mathrm{C}<T_{1}$. The full line is the theoretical fit for the "non-local" model. The hatched area indicates the quasi-continuous distribution of the ${ }^{14} \mathrm{~N}$ transition frequencies.

The angular dependence of the ${ }^{14} \mathrm{~N}$ quadrupole splitting $2 \Delta v_{\mathrm{Q}}$ for $T=26^{\circ} \mathrm{C}>T_{\mathrm{I}}$ is shown in Figs. $1 \mathrm{a}, \mathrm{b}, \mathrm{c}$ for rotation around the a, b and c crystal axes. The results show the existence of four physically (and two groups of chemically) nonequivalent ${ }^{14} \mathrm{~N}$ sites (Table 1). The experimental error is about $\pm 2 \mathrm{kHz}$.

In the I phase at $T=16{ }^{\circ} \mathrm{C}<T_{\mathrm{I}}, \mathbf{T}_{0}(i), i=1-4$ is not changed but $\mathbf{T}_{1^{\prime \prime}}(i), \mathbf{T}_{2^{\prime \prime}}(i)$ and $\mathbf{T}_{2^{\prime}}(i)$ are non-
[1] J. Dolinšek and R. Blinc, 'Z. Naturforsch. 41 a, 265 (1986).
zero and can be determined from the angular variation [1] (Figs. 2a-c) of the incommensurate frequency distribution singularities. The results are collected in Table 2. The discussion of the results within the "non-local" model [2] is, however, correctly described in [1].
[2] R. Blinc, J. Seliger, and S. Žumer, J. Phys. C 18, 2313 (1985).

