A Note on the 14N Electric Field Gradient Tensors in Incommensurate [N(CH$_3$)$_4$]$_2$ZnCl$_4$

J. Dolinšek and R. Blinc

J. Stefan Institute, E. Kardelj University of Ljubljana, Ljubljana, Yugoslavia

Z. Naturforsch. 42a, 305–306 (1987); received December 12, 1986

The 14N electric field gradient tensors of [N(CH$_3$)$_4$]$_2$ZnCl$_4$ have been re-determined in the paraelectric phase at 26 °C and in the incommensurate phase at 16 °C. The results in the incommensurate phase show the "non-local" nature of the 14N EFG tensor interaction.

Tetramethylammonium tetrachlorozincate [N(CH$_3$)$_4$]$_2$ZnCl$_4$ (TMATC-Zn) belongs to the group of A$_2$B$_x$ crystals. It first transforms with decreasing temperature from the normal (P) to the incommensurate (I) phase and then exhibits at lower temperatures a sequence of commensurate (C) phases. In a recent paper [1] we reported on the 14N EFG tensors of TMATC-Zn in the paraelectric phase at 26 °C and in the I phase at 16 °C. In that paper the b and c rotations did not correspond to precise rotations about the b and c crystallographic axes, but instead those two axes were tilted for a small angle (θ ≈ 4°) with respect to the rotation axes. This lead to a slight misinterpretation of the 14N EFG tensors which we would like to correct here.

In the paraphase, which has the space group Pmcn, there are four physically and two chemically nonequivalent 14N sites in the unit cell. The 14N nuclei lie on the b–c mirror plane. The two groups of chemically nonequivalent 14N nuclei can be divided into two sub-groups of physically nonequivalent 14N nuclei. These two subgroups are related by the glide symmetry which requires the b and c principal axes of the two corresponding physically nonequivalent 14N EFG tensors to be rotated symmetrically about the a principal axis, where a lies normal to the b–c mirror plane.

One thus expects in the paraphase four different 14N EFG tensors, where each of the two physically nonequivalent EFG tensors is of the form

\[
T_0 = \begin{bmatrix} T_{0}^{ab} & 0 & 0 \\ 0 & T_{0}^{bc} & \pm T_{0}^{ce} \\ 0 & \pm T_{0}^{be} & T_{0}^{ce} \end{bmatrix}, \quad T > T_1. \tag{1}
\]

The symmetry of the particular physically nonequivalent tensor in the I phase is described in [1], where it is shown that each tensor element $T_{ij}^{(a)}$ can be expanded in powers of the nuclear displacements from their high temperature equilibrium sites as:

\[
T_{ij}^{(a)}(x) = T_{ij}^{(a)} + \frac{1}{2} T_{ij}^{(a)} \cos \Phi(x) - \Phi_{ij}^{(a)} + \frac{1}{2} T_{ij}^{(a)} \cos 2\Phi(x) - \Phi_{ij}^{(a)},
\]

where $\Phi_{ij}^{(a)} = \Phi_{ij}^{(a)}$, $T_{ij}^{(a)}$, $\Phi_{ij}^{(a)}$, $T_{ij}^{(a)}$, and $\Phi_{ij}^{(a)}$ are the tensor elements and rotation angles, respectively.

Table 1. 14N EFG tensors in the crystal fixed frame in paraelectric TMATC-Zn expressed in frequency units (kHz), i.e. multiplied by 3e Q/$2h$.

\[
\begin{array}{cccc}
T_{0}(1,2) & 0 & 42.5 \text{±} & 4 \\
0 & 0 & 0 \\
42.5 \text{±} & 4 & 0 \\
0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
42.5 \text{±} & 4 & 0 \\
0 & 0 & 0 \\
\end{array}
\]

Table 2. 14N EFG tensors in kHz in the I phase of TMATC-Zn expressed in the crystal fixed a, b, c frame:

\[
T(x) = T_0 + T_1 \cos[\Phi(x) - \Phi_1] + \frac{1}{2} T_2 + \frac{1}{2} T_3 \cos 2[\Phi(x) - \Phi_2]
\]

\[
\begin{array}{cccccccc}
T_1 & T_2 & T_3 & \Phi_1 & \Phi_2 \\
0 & 6 & 12 & 0 & 0 & 0 & 0 & 45^\circ & 45^\circ \\
6 & 0 & 0 & 0 & 0 & 2 & \pm & 0.5 & 45^\circ & 0 \\
0 & 6 & 0 & 0 & 0 & 0 & 0 & -0.5 & 45^\circ & 0 \\
12 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 \\
5.5 & 0 & 0 & 0 & 0 & 1.5 & \pm & 0.5 & 0 & 0 \\
0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 45^\circ & 0 \\
7 & 0 & 0 & 0 & 0 & 0 & 0 & 5 & 3 & 45^\circ & 0 \\
\end{array}
\]

0340-4811 / 87 / 0300-0305 S 01.30/0. – Please order a reprint rather than making your own copy.
The angular dependence of the 14N quadrupole splitting $2\Delta v_0$ for $T = 26^\circ C > T_1$ is shown in Figs. 1a, b, c for rotation around the a, b and c crystal axes. The results show the existence of four physically (and two groups of chemically) nonequivalent 14N sites (Table 1). The experimental error is about ± 2 kHz.

In the I phase at $T = 16^\circ C < T_1$, $T_0(i)$, $i = 1-4$ is not changed but $T_{1T}(i)$, $T_{2T}(i)$ and $T_{2Z}(i)$ are non-zero and can be determined from the angular variation [1] (Figs. 2a–c) of the incommensurate frequency distribution singularities. The results are collected in Table 2. The discussion of the results within the "non-local" model [2] is, however, correctly described in [1].