Fe Isomer Shifts and the Problem of Calibration

A. X. Trautwein and H. Winkler
Institut für Physik, Medizinische Universität Lübeck, D-2400 Lübeck

Z. Naturforsch. 42a, 211–212 (1987); received November 24, 1986

The 57Fe isomer shift calibration problem is discussed, and critical comments concerning the paper "57Fe Isomer Shift Calibration Experiment" by Daniel et al. (1985) are given. We consider $\langle \Delta r^2 \rangle = (20 \pm 3) \cdot 10^{-3}$ fm2 at the moment as the most reliable estimate for the change of nuclear radius during gamma absorption; this value has been derived by measuring changes in isomer shift and calculating corresponding changes in electron contact density $g(0)$ according to $\Delta \delta = C \langle \Delta r^2 \rangle \cdot g(0)$.

A reliable calibration of the isomer shift δ is the prerequisite for deriving contact densities $g(0)$ from Mössbauer spectra. It is therefore important to design experiments with the aim to measure directly the change of nuclear radius $\langle \Delta r^2 \rangle$ during gamma resonance absorption. Such experiments have been performed for 57Fe on the basis of life time variations in the electron capture decay of 52Fe [1] or on the basis of conversion electron spectroscopy with 57Co(57Fe) sources [2]. However, the results, which have been obtained with these two methods, $\langle \Delta r^2 \rangle = (33 \pm 3) \cdot 10^{-3}$ fm2 [1] and $\langle \Delta r^2 \rangle < 9 \cdot 10^{-3}$ fm2 [2], respectively, do not agree at all. Other authors, including ourselves, strived for this goal by measuring changes in δ and calculating corresponding changes in $g(0)$.

$$\Delta \delta = C \langle \Delta r^2 \rangle \cdot g(0). \quad (1)$$

If δ is given in mm s$^{-1}$, $\langle \Delta r^2 \rangle$ in 10^{-3} fm2, and $g(0)$ in α_0^{-3}, the constant C takes the value 0.011 for 57Fe.

From the combined experimental ($\Delta \delta$) and calculational ($\langle \Delta r^2 \rangle$) procedure we have derived $\langle \Delta r^2 \rangle$ for a large variety of iron-containing compounds, i.e. $\langle \Delta r^2 \rangle = (20 \pm 3) \cdot 10^{-3}$ fm2 [4–6].

Due to its importance it is desirable to have a widely accepted isomer shift calibration. In our view there are serious drawbacks which cause us to question the value $\langle \Delta r^2 \rangle < 9 \cdot 10^{-3}$ fm2 (at 80% confidence) [2], due to the following reasons:

(i) The absolute value of the Fe 4s contact density $g_4s(0)$ was obtained in [2] from the experimental ratio x_4s/x_{3s} and the calculated relativistic Fe 3s value $g_{3s}(0) \sim 180 \alpha_0^{-3}$, i.e.

$$x_4s/x_{3s} = 0.061 \pm 0.005 \text{ the value } g_{4s}(0) = (10.98 \pm 0.90) \alpha_0^{-3} \text{ for } ^{57}\text{Fe/Au.} \quad (2a)$$

and

$$x_4s/x_{3s} = 0.17 \pm 0.10 \text{ the value } g_{4s}(0) = (30.6 \pm 18.0) \alpha_0^{-3} \text{ for } ^{57}\text{Fe/graphite.} \quad (2b)$$

With the experimental isomer shifts 0.65 mm s$^{-1}$ for 57Fe/Au and 0.25 mm s$^{-1}$ for 57Fe/graphite and the values (2a, b) we derive from (1)

$$\langle \Delta r^2 \rangle = 1.85 \cdot 10^{-3} \text{ fm}^2.$$
reported in [2] as conclusive, and because the value
-\(\langle 4r^2 \rangle = (33 \pm 3) \cdot 10^{-3} \text{ fm}^2\) given by Meykens et al. [1] seems to be overestimated by about 30 per cent due to reasons described in [2].
