Weak Non Linearity and Magneto-Acoustic Waves

Sikha Bhattacharyya and Rajkumar Roy Choudhury
Electronics Unit, Indian Statistical Institute, Calcutta 700035 , India
Z. Naturforsch. 39 a, 1007-1008 (1984);
received July 31, 1984
We show that the property of a linear system viz, the fact that square of the amplitude propagates with the group velocity continues to be valid in the case of magneto acoustic waves in the presence of weak non linearity.

The fact that for slowly varying wave trains in a linear system the square of the amplitude propagates with the group velocity is well known. In presence of weak non linearity, the behaviour of wave trains for different system has been studied by several authors [1, 2]. Shivamoggi [2] has shown that in the case of weakly linear longitudinal waves in a hot plasma the above mentioned result of linear systems holds, whereas his method of analysis fails for ion acoustic waves. It is then natural to ask whether this property continues to hold in the case of magneto-acoustic waves. As our analysis shows, the answer is in the affirmative.
Consider the magnetic acoustic waves propagating across a magnetic field in a cold collision free plasma [3]. In this system the field quantities are reduced to (i) ion density N (ii) ion fluid velocity \boldsymbol{V} (iii) the magnetic field $\boldsymbol{B}[4]$.

Restricting the system to one dimensional plane waves propagating along the x direction and taking the applied magnetic field to be along the z direction we have

$$
\begin{align*}
& \boldsymbol{V}=(u, v, 0), \tag{1}\\
& \boldsymbol{B}=\left(0,0, B_{z}\right) . \tag{2}
\end{align*}
$$

The basic system of equations can be written in the normalized form [4]

$$
\begin{align*}
& \frac{\partial n}{\partial t}+\frac{\partial}{\partial x}(n u)=0, \tag{3}\\
& \frac{\mathrm{~d} u}{\mathrm{~d} t}+\frac{1}{n} \frac{\partial}{\partial x}\left(\frac{B_{i}^{2}}{2}\right)=0, \tag{4}
\end{align*}
$$

Reprint requests to Dr. R. R. Choudhury, Electronics Unit, Indian Statistical Institute, Calcutta - 700035 , India.

$$
\begin{align*}
& \frac{\mathrm{d} t}{\mathrm{~d} t}=-\frac{1}{R_{\mathrm{e}}} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{1}{n} \frac{\partial B_{z}}{\partial x}\right)=0, \tag{5}\\
& \frac{\mathrm{~d} B_{z}}{\mathrm{~d} t}+B_{z} \frac{\partial u}{\partial z}=-\frac{1}{R_{i}} \frac{\partial}{\partial x}\left(\frac{\mathrm{~d} v}{\mathrm{~d} t}\right), \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}=\frac{\partial}{\partial t}+u \frac{\partial}{\partial x} \tag{7}
\end{equation*}
$$

and where n has been normalized by the unperturbed density N_{0}, the ion fluid velocity v by the Alfven speed $B_{0} /\left[4 \pi\left(m_{\mathrm{i}}+m_{\mathrm{e}}\right) N_{0}\right]^{1 / 2}$ and B by the strength of the applied magnetic field $B_{0} . m_{\mathrm{i}}$ and m_{e} denote the masses of the ions and the electrons, R_{i} and R_{e} are the normalized ion and electron Larmor frequencies, respectively.

Equations (3) to (6) can be written as
$\frac{\partial U}{\partial t}+v_{1} \frac{\partial U}{\partial x}+v_{2} \frac{\partial}{\partial x}\left[I \frac{\partial}{\partial t}+U I \frac{\partial}{\partial x}\right] U=0$,
where

$$
\begin{align*}
& U=\left[\begin{array}{l}
n \\
u \\
r \\
B_{z}
\end{array}\right], \tag{9}\\
& v_{1}=\left[\begin{array}{llll}
u & n & 0 & 0 \\
0 & u & 0 & B_{z / n} \\
0 & 0 & u & 0 \\
0 & B_{z} & 0 & u
\end{array}\right] . \tag{10}\\
& v_{2}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \\
0 & 0 & 0 & R_{\mathrm{e}}^{-1} & n^{-1} \\
0 & 0 & R_{i}^{-1} & 0
\end{array}\right] . \tag{11}
\end{align*}
$$

I is the 4×4 unit matrix and

$$
\begin{equation*}
R_{\mathrm{i}}=\left(m_{\mathrm{e}} / m_{\mathrm{i}}\right)^{1 / 2}, \quad R_{\mathrm{e}}=\left(m_{\mathrm{i}} / m_{\mathrm{e}}\right)^{1 / 2} . \tag{12}
\end{equation*}
$$

To solve the system of equations (8) we expand all quantities to represent slowly varying wave trains of the form

$$
\begin{align*}
B_{z}=1 & +\varepsilon B_{z 1}(\zeta, \tau, \theta) \\
& +\varepsilon^{2} B_{z 2}(\zeta, \tau, \theta)+\ldots, \tag{13}\\
n=1 & +\varepsilon n_{1}(\zeta, \tau, \theta) \\
& +\varepsilon^{2} n_{2}(\zeta, \tau, \theta)+\ldots, \tag{14}\\
u=\varepsilon & \varepsilon u_{1}(\zeta, \tau, \theta)+\varepsilon^{2} u_{2}(\zeta, \tau, \theta)+\ldots, \tag{15}
\end{align*}
$$

where

$$
\begin{align*}
& \zeta=\varepsilon x, \quad \tau=\varepsilon t \tag{16}\\
& \theta=k(\zeta, \tau) x-w(\zeta, \tau) t \tag{17}
\end{align*}
$$

From the first set of equations for $O(\varepsilon)$, we have the starting solutions as follows:

$$
\begin{align*}
& B_{z 1}=a(\zeta, \tau) e^{i \theta}+\bar{a}(\zeta, \tau) e^{-i \theta}, \\
& n_{1}=\frac{k^{2}}{w^{2}}\left[a(\zeta, \tau) e^{i \theta}+\bar{a}(\zeta, \tau) e^{-i \theta}\right], \\
& u_{1}=\frac{k}{w}\left[a(\zeta, \tau) e^{i \theta}+\bar{a}(\zeta, \tau) e^{-i \theta}\right], \\
& v_{1}=-\frac{i k}{R_{\mathrm{e}}}\left[a(\zeta, \tau) e^{i \theta}-\bar{a}(\zeta, \tau) e^{-i \theta}\right], \tag{18}
\end{align*}
$$

where the bar denotes the complex conjugate and the dispersion relation takes the form

$$
\begin{equation*}
k^{2}-w^{2}=k^{2} w^{2} \tag{19}
\end{equation*}
$$

The second set of equations for $O\left(\varepsilon^{2}\right)$ are given by

By removing the secular terms in (13), we have,

$$
\begin{align*}
& -\frac{2 k^{2}}{w} a_{\tau}+2 k\left(w^{2}-1\right) a_{\zeta}+3 k w a w_{\zeta}=0 \\
& -\frac{2 k^{2}}{w} \bar{a}_{\tau}+2 k\left(w^{2}-1\right) \bar{a}_{\zeta}+3 k w \bar{a} w_{\zeta}=0 \tag{25}
\end{align*}
$$

Using the dispersion relation (19), (25) becomes

$$
\bar{a} a_{\tau}+\bar{a}_{\tau} a+\frac{w^{3}}{k^{3}}\left(\bar{a} a_{\zeta}+\bar{a}_{\zeta} a\right)-\frac{3 w^{2}}{k} a \bar{a} w_{\zeta}=0
$$

which can be written in the forms

$$
\begin{align*}
& \frac{\partial}{\partial \tau}\left[A^{2}\right]+\frac{\partial}{\partial \zeta}\left[C(k) \mid A^{2}\right]=0 \tag{26}\\
& C(k)=\frac{\mathrm{d} w}{\mathrm{~d} k}=\frac{w^{3}}{k^{3}} \tag{27}
\end{align*}
$$

Equation (27) shows that the quantity $|A|^{2}$ propagates with the group velocity.

$$
\begin{align*}
& \frac{\partial n_{2}}{\partial t}+\frac{\partial n_{1}}{\partial \tau}+\frac{\partial u_{1}}{\partial \zeta}+\frac{\partial u_{2}}{\partial x}+\frac{\partial}{\partial x}\left(n_{1} u_{1}\right)=0 \tag{20}\\
& \frac{\partial u_{2}}{\partial t}+\frac{\partial u_{1}}{\partial \tau}+u_{1} \frac{\partial u_{1}}{\partial x}+\frac{\partial B_{z 1}}{\partial \zeta}+\frac{\partial B_{z 2}}{\partial x}+B_{z 1} \frac{\partial B_{z 1}}{\partial x}-n_{1} \frac{\partial B_{z 1}}{\partial x}=0 \tag{21}\\
& \frac{\partial v_{2}}{\partial t}+\frac{\partial v_{1}}{\partial \tau}+u_{1} \frac{\partial v_{1}}{\partial x}+\frac{1}{R_{\mathrm{e}}} \frac{\partial B_{z 2}}{\partial x}+\frac{1}{R_{\mathrm{e}}} u_{1} \frac{\partial B_{z 1}}{\partial x} \frac{-k w}{R_{\mathrm{e}}}\left(n_{1} B_{z 1}\right)+\frac{1}{R_{\mathrm{e}}} \\
& \quad \cdot\left(i k a_{\tau}-k a \theta_{\tau}-i w_{\zeta} a-i w a_{\zeta}+w a \theta_{\zeta}\right) e^{i \theta}=0 \tag{22}\\
& \frac{\partial B_{z 2}}{\partial t}+\frac{\partial B_{z 1}}{\partial \tau}+B_{z 1} \frac{\partial u_{1}}{\partial x}+\frac{\partial u_{2}}{\partial x}+\frac{\partial u_{1}}{\partial \zeta}+u_{1} \frac{\partial B_{z 1}}{\partial x}+\frac{1}{R_{\mathrm{i}}} \frac{\partial^{2} v_{2}}{\partial x \partial t}+\frac{1}{R_{\mathrm{i}}} \frac{\partial}{\partial x}\left(u_{1} \frac{\partial v_{1}}{\partial x}\right) \\
& \quad+\left(k k_{\tau} a+k^{2} a_{\tau}+i k^{2} a \theta_{\mathrm{C}}-k_{\zeta} w a-k w_{\zeta} a-k w a_{\zeta}-i k w a \theta_{\zeta}\right) e^{i \theta}+\mathrm{c} . \mathrm{c} .=0 \tag{23}
\end{align*}
$$

Using (18) and (19), (20) - (23) become

$$
\begin{align*}
& \left(\frac{\partial^{2} B_{z 2}}{\partial t^{2}}-\frac{\partial^{2} B_{z 2}}{\partial x^{2}}-\frac{\partial^{4} B_{z 2}}{\partial x^{2} \partial t^{2}}\right)+\frac{\partial^{2}}{\delta x \delta t}\left(k w n_{1} B_{z 1}\right)-\frac{1}{R_{i}} \frac{\delta^{2}}{\delta x \delta t}\left(u_{1} \frac{\delta V_{1}}{\delta x}\right) \\
& -\frac{\delta^{2}}{\partial x \partial t}\left(u_{1} \frac{\partial B_{z 1}}{\partial x}\right)+\frac{\partial}{\partial t}\left(B_{z 1} \frac{\partial u_{1}}{\partial x}\right)+\frac{\partial}{\partial t}\left(u_{1} \frac{\partial B_{z 1}}{\partial x}\right)+\frac{1}{R_{i}} \frac{\delta^{2}}{\delta t \delta x}\left(u_{1} \frac{\delta V_{1}}{\delta x}\right) \\
& -\frac{\delta}{\delta x}\left(u_{1} \frac{\delta u_{1}}{\delta x}\right)-\frac{\partial}{\partial x}\left(B_{z 1} \frac{\partial B_{Z 1}}{\partial x}\right)+\frac{\partial}{\partial x}\left(n_{1} \frac{\partial B_{z 1}}{\partial x}\right)+\left[-\frac{2 k^{2}}{w} a_{\tau}+2 k\left(w^{2}-1\right) a_{\zeta}+3 k w a w_{\zeta}\right] e^{i \theta} \\
& +\left[-\frac{2 k^{2}}{w} \bar{a}_{\tau}+2 k\left(w^{2}-1\right) \bar{a}_{\zeta}+3 k w \bar{a} w_{\zeta}\right] e^{-i \theta}=0 . \tag{24}
\end{align*}
$$

[1] G. B. Whitham, Linear and Nonlinear Waves, John Wiley, New York 1974.
[2] K. Bhimsen and B. K. Shivamoggi, J. Plasma Physics 27, 507 (1982).
[3] T. Kakutani, T. Kawahara, and T. Taniuti, J. Phys. Soc. Japan 23, 1138 (1967).
[4] T. Kakutani. H. Ono, T. Taniuti, and C. C. Wei, J. Phys. Soc. Japan 24, 1159 (1968).

