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We construct a formal second integral of motion in a 
bisymmetrical potential field describing the motion on the 
plane of symmetry of a triaxial galaxy. We also check the 
constancy of the second integral adding higher-order terms 
which are found using a computer program.

Since the first indication that elliptical galaxies 
may not be rotationally flattened [1] and the con­
firmation of this by Illingworth [2] the dynamics of 
elliptical galaxies have been an active field of 
research.

In order to describe the motion on the plane of 
symmetry of a triaxial galaxy we adopt the bisym­
metrical potential

V= j  (P.v2 + Q v2) -  £ {a .y4 + 2 b x2y2 + c / ) ,  (1)

where P, Q, a, b, c are positive constants and £ is a 
small parameter. It is also supposed that the ratio 
p\/2/Q\/2 irrational. Similar potentials with cubic 
[3], [4] or quartic [5] terms have been used to 
describe the motion on the meridian plane of 
biaxial galaxies. 

In the case of the potential (1) the Hamiltonian

H = UX2+ Y2 + P.y2 + Qv2)
-  £ (ia .Y4 +2 b x2 v2 + c v4) = H0 + eH ] = h , (2)

where X=dx/dt, Y=dy/dt and h is the numerical 
value of the function //, is an exact integral of 
motion.

In applying the method of Contopoulos [6] we 
shall try to construct a formal second integral of 
motion of the form
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/= /o + £ /, + ...,

where

I0 = r(X 2+ Px2)

(3)

(4)
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Ii+i = - S ( I h H l) d t+ f i+l(I0, J 0) (5)
(/"= 0, 1, 2 ,...) .

In (5), (/,,//]) are Poisson brackets, J 0= H0— I0, 
t is an auxiliary variable and f i+l(IQ, J 0) is an 
arbitrary function. Equation (5) for i = 0 gives

/, = -  4 f (ax3X+ bxy2X) dt + /, (/0, J 0) . (6)

If we take into account the solutions of the "un­
perturbed" problem (£ = 0)

.Y = (2I0/P )U2 sin P w2( t -  t0) ,
-  n .{2Jq/Q) sin Quzt , 

X = (2/0) l/2 cos P U2( t - t 0), 
Y=(2J0)W2 cos QU2t,

where t0 is a constant, we find

bJo

(7)

PQ
(X2 -  Px2)

P - Q

-fl.Y4+ /,( /0 ,y 0),

—  (X2 -  Px2) ( Y2 -  Qy2) + 2 xy X Y

(8)

where after finishing the integration we used the 
following identities:

2 /0 cos 2 PU2 (t -  t0) = X2 -  Px2, 
/0sin 2PW2(t — t0) = PU2x X , 
2J0cos2Qult = Y2— Qy2, 
Jo sin 2Qu2t = Q}l2y Y. (9)

Assuming that / ,  (70, J 0) is equal to zero we have 
the following expression for the first two terms of 
the second integral:

I= Io  + £h = \{X 2+ P x 2) 

bJo-I- £ (^2 -  Px2) -
PQ ' P - Q

• (Y2- Q y 2) + 2xyXY

----(X2 -  Px2)
2Q

(10)

The higher order terms of the second integral are 
given through the recurrent formula (5). However,
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Table 1. Constancy of the second integral.

I (Degree) max D 2 Z)/(max + min)

/o(2)
+ e/,(4) 
+ e2F( 6) 
+ 8) 
+ e4/4(10) 
+ e5/5(12) 
+ £6/6(14)

0.0100
0.00862
0.008611
0.0086002
0.00859982
0.00859978
0.00859977

0.0074
0.00850
0.008594
0.0085984
0.00859967
0.00859977
0.00859977

0.0026 
0.00012 
0.000017 
0.0000018 
0.00000015 
0.00000001 
0.00000000

0.30 
0.014 
0.0020 
0.00021 
0.000017 
0.0000012 
0.00000000

the actual calculation of these terms becomes soon 
prohibitively long.

Using a computer program [7], we calculated the 
higher order terms of the second integral up to the 
terms of the fourteenth degree in the variables. The 
number of terms of different degrees are (2) 2; 
(4) 8; (6) 20: (8) 40: (10) 70; (12) 112; (14) 168. 
It is interesting to note that as higher order terms 
are included in the expansion (10) the second 
integral is better conserved when the energy is 
small. For this reason the values of the second 
integral were found for a number of orbits in many 
points along the orbit. The orbits were calculated by 
numerical integration of the equations of motion 
using the Runge-Kutta method in double precision.

The units used were kpc for x, y and kpc (107̂ r)-1 
for X, Y. The step of integration was 0.02 (107 vr).

In Table 1 max and min are the maximum and 
minimum values of the second integral for an orbit 
with initial conditions Xq = 0.2, >'0 = = 0 and 
/? = 0.1, for a time interval equal to 5x 109 years. 
The values of the constants are F=0.5, Q = 0.6, 
a = 1.0, b = 0.8. c = 0.5 while e is equal to 0.05. 
The maximum deviation D = max -  min and the 
maximum relative deviation 2 F>/(max + min) are 
also given in this Table. We see that when the terms 
of the fourteenth degree are included 8 significant 
figures of the second integral are constant. The 
energy constant was conserved up to the twelveth 
printed figure.
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