Spectroscopic and Kinetic Characteristics of HO₂ and O₂ Species Studied by Pulse Radiolysis

Nikola Getoff* and Michaela Prucha
Institut für Theoretische Chemie und Strahlenchemie der Universität Wien, Austria

Z. Naturforsch. 38a, 589–590 (1983);
received January 20, 1983

The formation and decay of HO₂ and O₂ transients was reinvestigated using oxygenated aqueous t-butanol solutions in the pH range from 1.5 to about 8. The obtained spectroscopic and kinetic characteristics of both superoxide radical forms are: for HO₂, λ \text{max} = 230 nm (ε_{230} = 130 m² mol⁻¹⁻¹), 2k (HO₂ + HO₂) = (3.7 ± 0.2) x 10⁶ dm³ mol⁻¹⁻¹ s⁻¹, and for O₂, λ \text{max} = 245 nm (ε_{245} = 215 m² mol⁻¹⁻¹), 2k (O₂ + O₂) < 10 dm³ mol⁻¹⁻¹ s⁻¹.

The formation and reactivity of both forms of the superoxide radical (HO₂ and O₂) have been a subject of extensive studies in respect to its importance in radiation and physicochemistry [1–8], as well as in biochemistry and biology [9–17]. The reported molar extinction coefficients (ε) of HO₂ and O₂ are showing a large discrepancy. By means of pulse radiolysis and using an aqueous solution containing N₂O and H₂O₂ (pH = 7) a value of ε_{260}(O₂) = 100 m² mol⁻¹ was found, whereas for oxygenated solutions in absence of H₂O₂ (pH = 13) it was ε_{260}(O₂) = 200 m² mol⁻¹ [18]. Other authors reported ε_{260}(O₂) = 87 m² mol⁻¹, which was not corrected for ε_{260}(OH) [2] and ε_{260}(O₂) = 180 m² mol⁻¹ [6], using formate as an OH scavenger. The last authors observed for HO₂, λ \text{max} = 230 nm (ε_{230} = 125 m² mol⁻¹⁻¹) and for O₂, λ \text{max} = 245 nm (ε_{245} = 197 m² mol⁻¹⁻¹). For the equilibrium: HO₂ ↔ O₂ + H⁺ the reported pK-values ranged from 4.45 ± 0.1 [4], 4.5 ± 0.15 [1–3], 4.8 [5] to 4.88 ± 0.1 [6]. The decay constants for both forms of the peroxyde radical were found to be: k (HO₂ + HO₂) = 8.5 x 10⁵ dm³ mol⁻¹⁻¹ s⁻¹ [6] and (8.6 ± 0.6) x 10⁶ dm³ mol⁻¹⁻¹ s⁻¹ [8], whereas for k (O₂ + O₂) < 100 dm³ mol⁻¹⁻¹ s⁻¹ [6] and < 0.35 dm³ mol⁻¹⁻¹ s⁻¹ [8].

The scope of the present study was to reinvestigate the spectroscopic and kinetic characteristics of both species (HO₂ and O₂) by pulse radiolysis of oxygenated aqueous solutions (1.42 x 10⁵ mol · dm⁻³ O₂), containing 10⁻² mol · dm⁻³ t-butanol as an OH scavenger (k (OH + t-C₄H₉OH) = 5.5 x 10⁸ dm³ mol⁻¹⁻¹ s⁻¹ [19]) in the pH-range from 1.5 to about 8.

The pulse radiolysis facility* (3 MeV Van de Graaff accelerator) and the performance of the dosimetry have been previously described [20, 21]. The analysing light source (XBO 450 Watt Xenon lamp “Osram”) provides an up to 70-fold increase of the light intensity in the u. v. region by flashing. By means of a minicomputer (PDP-11/10, DEC) the stored data were reduced in number and transferred to another computer (PDP-10, DEC) on which the data collection program was run. The traces, normalized for dose, were averaged in order to improve the signal to noise ratio. The applied dose per 1 μs electron pulse was varied from 6 to 15 J · kg⁻¹ (0.6 to 1.5 krad). The solutions were prepared with R. G. chemicals (E. Merck) using at least four times distilled water.

In the oxygenated acid aqueous solutions of 10⁻² mol · dm⁻³ t-butanol (pH = 1.5 – 2) the following reactions are taking place:

H₂O → e_aq (2.7), H (0.6), OH (2.8), H₂ (0.45),
H₂O₂ (0.74), H₂O (2.7)** (1)
e_aq + H⁺ → H (k₂ = 2.3 x 10⁴ dm³ mol⁻¹⁻¹ s⁻¹ [22]), (2)
H + O₂ → HO₂ (k₃ = 2 x 10⁶ dm³ mol⁻¹⁻¹ s⁻¹ [23]), (3)
H + t-C₄H₉OH → t-C₄H₉OH (k₄ = 1.2 x 10⁵ dm³ mol⁻¹⁻¹ s⁻¹ [23]), (4)
OH + t-C₄H₉OH → t-C₄H₉OH + H₂O (k₅ = 5.5 x 10⁸ dm³ mol⁻¹⁻¹ s⁻¹ [19]), (5)
H₂O₂ + HO₂ → H₂O + O₂ (2k₆ to be determined). (6)

Under these conditions the obtained total absorption spectrum represents the absorption of HO₂, H₂O₂ and t-C₄H₉OH species. Hence it was corrected for matrix (subtraction of the absorption of the last

* Thanks are expressed to Dipl. Phys. F. Schwörer, Mr. K. H. Toepfer, and Mr. F. Reikowski for valuable help.

** The G-values (number of species formed per 100 eV absorbed energy) of the primary products are given in parantheses.

* Present address: Nelkenstr. 1, 6305 Buseck 1, FRG.

* Reprint requests to Prof. Dr. N. Getoff, Institut für Theoretische Chemie und Strahlenchemie der Universität Wien, Währinger Straße 38, 1090 Wien, Austria.
two species, obtained by pulse radiolysis of deoxygenated \(10^{-2}\text{ mol} \cdot \text{dm}^{-3} \) \(\text{t-C}_6\text{H}_5\text{OH} \) solution, taking also into account the contribution of \(\text{t-C}_6\text{H}_5\text{OH} \) radicals produced by H-atoms. The resulting absorption spectrum for \(\text{HO}_2 \) is shown in Figure 1. The obtained absorption maximum, \(\lambda_{\text{max}} = 230 \text{ nm} \) and \(\varepsilon_{230} = 130 \text{ m}^2 \text{ mol}^{-1} \cdot \text{cm}^{-1} \), agree very well with one of the earlier reported data [6].

The formation of \(\text{O}_3^2 \) species was studied in the pH range of 7.5 to 8.3, using oxygenated \(10^{-2} \) \(\text{t-bu-} \)

tanol solutions. In this case some additional reactions run of, namely:

\[
e_{\text{aq}} + \text{O}_2 \rightarrow \text{O}_3^2 \quad (k_7 = 1.9 \times 10^{10} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}) [22],
\]

\[
\text{O}_3^2 + \text{O}_2 \rightarrow \text{O}_3^2^- + \text{O}_2 \quad (2k_8 \text{ to be determined}).
\]

The absorption spectrum of \(\text{O}_3^2 \) species obtained after matrix-correction is presented likewise in Figure 1. A maximum at \(\lambda = 245 \text{ nm} \) with \(\varepsilon_{245} = 215 \text{ m}^2 \text{ mol}^{-1} \) as a spectroscopic characteristics of \(\text{O}_3^2 \) were obtained. These data are in fair agreement with previous ones [6].

The mean values of the determined rate constants for the decay of both forms of the superoxide radical are: \(2k_6 (\text{HO}_2 + \text{HO}_2) = (3.7 \pm 0.2) \times 10^6 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1} \) and \(2k_8 (\text{O}_3^2 + \text{O}_3^2) < 10 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1} \).

Although \(\text{t-C}_6\text{H}_5\text{OH} \) radicals are known to be rather unreactive, their reactivity with the \(\text{HO}_2 \) and \(\text{O}_3^2 \) transients cannot be excluded completely. Hence, the obtained rate constants \((k_6 \text{ to } k_8) \) are somewhat higher.

The dissociation constant of \(\text{HO}_2^- \), \(pK = 4.8 \pm 0.05 \) was determined by plotting OD/cm-values at 260 nm as a function of pH (Fig. 1, insert). The obtained pK-value is in full agreement with an earlier reported one [5].

Acknowledgement

The authors thank Prof. Dr. D. Schulte-Frohlinde for using the pulse radiolysis equipment of Max-Planck-Institut für Strahlenchemie, Mülheim (Ruhr), FRG.