1320 Notizen

NOTIZEN

Monte-Carlo Simulation of a Two-dimensional Dipolar Lattice

S. Romano

Department of Chemistry, The University, Southampton (England)

(Z. Naturforsch. 32 a, 1320-1322 [1977]; received August 30, 1977)*

Monte-Carlo calculations were carried out on a system consisting of 256 point-dipoles, whose centres are fixed in a two-dimensional square lattice with the usual boundary condition; the Epstein-Ewald-Kornfeld algorithm was used in evaluating the electrostatic energy. No evidence of a first-order phase transition was found, and the results suggest there might be a second-order one. Additional calculations were carrierd out using the mean-field theory, which was found to overestimate the transition temperature by about a factor two.

The present note reports on Monte-Carlo simulation of a classical, pure-dipolar system in two dimensions, whose dipolar centres are fixed on a simple square lattice; all dipoles are assumed to be identical, having a dipole moment of magnitude μ ; calculations showed that the ground-state for this system is antiferroelectric, with an energy $-2.549\, \Lambda$

Table 1. The ground-state antiferroelectric lattice.

Particle	Coordinates	Orientation
1	(0, 0)	(1, 0)
2	$(0, \frac{1}{2})$	(-1, 0)
3	$(\frac{1}{2}, 0)$	(1, 0)
4	$(\frac{1}{2}, \frac{1}{2})$	(-1, 0)

particle⁻¹ versus -2.17 for the ferroelectric configuration. The pair potential consists of the dipole-dipole interaction only

$$\Phi(i,j) = (\boldsymbol{\mu}_i \cdot \nabla_i) \; (\boldsymbol{\mu}_j \cdot \nabla_j) \left(\frac{1}{r}\right) = -\,\mu^2 \, \boldsymbol{u}_i \cdot \mathbf{T}_{ij} \cdot \boldsymbol{u}_j \;, \tag{1}$$

$$\mathbf{T}_{ij} = \frac{1}{r^3} \left(\frac{3}{r^2} \mathbf{r} \mathbf{r} - \mathbf{I} \right) i + j; \quad \mathbf{T}_{ii} = 0,$$
 (2)

$$\mathbf{r} = \mathbf{r}_i - \mathbf{r}_j, \quad r = |\mathbf{r}|,$$
 (3)

Reprint requests to Dr. S. Romano, Department of Chemistry, The University, Southampton SO9 5NH, England.

for dipole moments μ_i , μ_j located at \mathbf{r}_i , \mathbf{r}_j ; \mathbf{u}_i , \mathbf{u}_j are unit vectors defining their orientations, \mathbf{T}_{ij} is the interaction sentor and \mathbf{I} is the identity matrix.

All thermodynamic properties were expressed in reduced units; let Λ be defined by

$$\Lambda = \mu^2 / a^3 \tag{4}$$

where a is the nearest-neighbour distance; temperatures are given in units A/k and energies in units A particle⁻¹; note that the thermodynamic properties are exclusively functions of the reduced temperature. There has been recently a number of theoretical and computer-simulation calculations of the properties of a three-dimensional dipolar lattice $^{1-4}$ whereas no calculations seem to have been carried out for a two-dimensional one.

The Epstein-Ewald-Kornfeld ⁵⁻⁹ algorithm was used in order to achieve a faster convergence in the evaluation of the electrostatic energy; a similar treatment for a three dimensional dipolar lattice has been developed by Hoskins, Perram and Smith ^{10, 11}.

Results for the energy and the specific heat (in units k particle⁻¹) are listed in Table 2; both the

Table 2. Results for energy and specific heat.

T	-U	C_v
0.025	2.5371 ± 0.0002	0.42 ± 0.03
0.050	2.5246 ± 0.0006	0.50 ± 0.09
0.100	2.4992 ± 0.0005	0.56 ± 0.12
0.150	2.4742 ± 0.0006	0.50 ± 0.04
0.200	2.449 ± 0.002	0.56 ± 0.07
0.250	2.4200 ± 0.0004	0.48 ± 0.03
0.320	2.384 ± 0.002	0.54 ± 0.07
0.400	2.340 ± 0.003	0.68 ± 0.06
0.500	2.281 ± 0.005	0.64 ± 0.06
0.625	2.212 ± 0.009	0.67 ± 0.11
0.700	2.15 ± 0.01	0.61 ± 0.09
0.750	2.096 ± 0.008	0.80 ± 0.05
0.800	2.04 ± 0.01	0.80 ± 0.10
0.850	1.981 ± 0.004	0.86 ± 0.07
0.900	1.93 ± 0.01	0.91 ± 0.08
0.950	1.87 ± 0.01	0.88 ± 0.09
1.000	1.828 ± 0.005	0.82 ± 0.09
1.0625	1.77 ± 0.01	0.9 ± 0.1
1.125	1.720 ± 0.005	0.82 ± 0.08
1.250	1.620 ± 0.005	0.68 ± 0.05
1.500	1.465 ± 0.005	0.60 ± 0.03
1.750	1.327 ± 0.005	0.52 ± 0.02
2.000	1.208 ± 0.006	0.38 ± 0.04
2.500	1.024 ± 0.005	0.29 ± 0.02
3.000	0.88 ± 0.01	0.27 ± 0.01
4.000	0.680 ± 0.005	0.136 ± 0.008
6.000	0.475 ± 0.004	0.069 ± 0.001
8.000	0.354 ± 0.007	0.046 ± 0.003

^{*} Eingang der 1. Fassung 16. 10. 1977.

Notizen 1321

statistical errors and the specific heat were calculated in the usual way.

The order parameters are usually defined $^{12-14}$ as

$$Y_{1} = \frac{1}{N} \left\langle \sum_{i=1}^{N} \boldsymbol{e}_{i} \cdot \boldsymbol{u}_{i} \right\rangle;$$

$$Y_{2} = \frac{1}{N} \left\langle \sum_{i=1}^{N} \left[2 \left(\boldsymbol{e}_{i} \cdot \boldsymbol{u}_{i} \right)^{2} - 1 \right] \right\rangle, \tag{5}$$

where e_i is the unit vector defining the orientation of the i-th particle in the ground-state lattice. It could be argued that, at least at a sufficiently high temperature, there might exist preferred orientations which do not coincide with the ground-state ones, and the order parameter Y2 ought to be replaced by

$$\begin{split} Z_2 = & \text{largest eigenvalue of the matrix} \\ & \begin{pmatrix} 2 \left\langle u_x^2 \right\rangle - 1 & 2 \left\langle u_x u_y \right\rangle \\ 2 \left\langle u_x u_y \right\rangle & 2 \left\langle u_y^2 \right\rangle - 1 \end{pmatrix}. \end{split} \tag{6}$$

We calculated these matrix elements and also $\langle u_x \rangle$ and $\langle u_y \rangle$; at all temperatures we have

$$\langle u_x \rangle = \langle u_y \rangle = \langle u_x u_y \rangle = 0$$
,

thus Z_2 coincides with Y_2 , and the system does not turn ferroelectric; at $T \geqq 0.90$ we found

$$\langle u_x^2 \rangle = \langle u_y^2 \rangle = 0.5$$
.

The results for the specific heat suggest that the behaviour of the system is essentially harmonic at $T \leq 0.32$, and anharmonicity sets in above this temperature.

The present results do not show any evidence of a discontinuity in the energy (first order phase transition); there might be a second-order phase transition between T = 1.125 and T = 1.250 but the statistics of the C_v values does not allow any conclusive result. Some additional calculations were carried out using the mean-field theory (a popular tool in dealing with order-disorder transitions), in order to test its validity.

According to the usual mean-field approximation 15, 16 Eq. (1) is averaged first over all possible orientations and then over coordinates or particle i, and the resulting pseudopotential turns out to be

$$\psi = \langle \Phi(i,j) \rangle_{j} = -4.34 X \cos \Theta, \quad X = \langle \cos \Theta \rangle,$$
 (7)

where ψ is expressed in units Λ and X is the order parameter, which satisfies the consistency equation

$$X = \frac{1}{Z} \int_{0}^{2\pi} \cos \Theta \exp\left(-\frac{\psi}{T}\right) d\Theta$$

$$Z = \int_{0}^{2\pi} \exp\left(-\frac{\psi}{T}\right) d\Theta, \qquad (8)$$

where Z is the one-particle pseudopartition function. This equation can be rewritten as 17

$$X = I_1(\zeta)/I_0(\zeta)$$
 $\zeta = (4.34/T)X$, (9)

where I_0 and I_1 are modified Bessel functions of the first kind; this equation can be solved numerically, yielding X as function of T. The values obtained in this way (see Table 3) were found to be larger than the Monte-Carlo ones.

Table 3. Order parameters.

T	Monte-Carlo re	Mean field	
	Y_1	\boldsymbol{Y}_2	$\stackrel{ ext{theory}}{X}$
0.025	0.980 ± 0.002	0.920 ± 0.008	0.997
0.050	0.980 ± 0.002	0.923 ± 0.007	0.994
0.100	0.956 ± 0.008	0.84 ± 0.01	0.988
0.150	0.954 ± 0.002	0.830 ± 0.006	0.982
0.200	0.914 ± 0.007	0.69 ± 0.02	0.976
0.250	0.918 ± 0.005	0.71 ± 0.01	0.970
0.320	0.897 ± 0.004	0.643 ± 0.008	0.961
0.400	0.86 ± 0.01	0.55 ± 0.02	0.950
0.500	0.84 ± 0.01	0.48 ± 0.02	0.936
0.625	0.80 ± 0.02	0.40 ± 0.02	0.918
0.700	0.76 ± 0.02	0.34 ± 0.02	0.906
0.750	0.64 ± 0.01	0.19 ± 0.01	0.898
0.800	0.50 ± 0.05	0.07 ± 0.02	0.889
0.850	0.48 ± 0.05	0.06 ± 0.03	0.880

In the frame of this mean-field approximation the difference in the Helmholtz free energy between ordered and disordered phase for our system is given

$$\Delta A/T = \frac{1}{2} \zeta X - \ln I_0(\zeta); \qquad (10)$$

when Eq. (9) is solved, X is found to be a continuous function of T, thus the previous equation can be expanded about the point X = 0, giving

$$\frac{\Delta A}{T} = \frac{1}{2} \zeta X - \frac{1}{4} \zeta^2 + \frac{1}{64} \zeta^4 + O(\zeta^6)$$
 (11)

$$=\frac{1}{2}\left(1-\frac{4.34}{2\,T}\right)\frac{4.34}{T}X^2+\frac{1}{64}\!\left(\frac{4.34}{T}\right)^{\!2}\!\!X^4+O\left(X^6\right)\,.$$

The transition temperature is determined by the vanishing of the coefficient of the second power of $X^{17, 18}$ and turns out to be T = 2.17; the vanishing of the third power of X is a necessary condition for a second-order phase transition; the coefficient of the fourth power is positive, as requested for stability. The mean-field treatment overestimates the transition temperature by a factor of about 2.

1322

- ¹ D. E. Sullivan, J. M. Deutch, and G. Stell, Mol. Phys. 28, 1359 [1974].
- ² V. M. Jansoone, Chem. Phys. 3, 78 [1974].
- ³ P. N. Vorontsov-Vel'yaminov and I. A. Favorski, Fiz. Tverd. Tela 15, 2899 [1973].
- ⁴ D. J. Adams and I. R. McDonald, Mol. Phys. 32, 931 [1976].
- ⁵ P. Epstein, Math. Ann. **56**, 615 [1903].
- ⁶ P. Epstein, Math. Ann. 63, 205 [1907].
- P. P. Ewald, Ann. Phys. 64, 253 [1921].
 H. Kornfeld, Z. Phys. 22, 27 [1924].
- ⁹ M. P. Tosi, Solid State Phys. 16, 1 [1964].
- ¹⁰ E. R. Smith and J. W. Perram, Mol. Phys. 30, 31 [1975].
- ¹¹ C. S. Hoskins and E. R. Smith, Chem. Phys. 13, 33 [1976].

- 12 T. Gibbons and M. L. Klein, J. Chem. Phys. 60, 112
- ¹³ L. Verlet, Phys. Rev. B **159**, 98 [1967].
- ¹⁴ J. Viellard-Baron, J. Chem. Phys. 56, 4729 [1972].
- Nellard-Baron, J. Chem. Phys. 36, 4129 [1972].
 R. L. Humphries, P. G. James, and G. R. Luckhurst, Symp. Faraday Soc. 5, 107 [1971].
 R. L. Humphries, P. G. James, and G. R. Luckhurst, J. Chem. Soc. Faraday Trans. II 68, 1031 [1972].
- ¹⁷ J. Y. Denham, J. Lewis, G. R. Luckhurst, and C. Zannoni, to be published.
- ¹⁸ L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Chapter XIV. 2nd Edition, Pergamon Press, Oxford 1968.