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Monte-Carlo calculations were carried out on a system 
consisting of 256 point-dipoles, whose centres are fixed in a 
two-dimensional square lattice with the usual boundary con­
dition; the Epstein-Ewald-Kornfeld algorithm was used in 
evaluating the electrostatic energy. No evidence of a first- 
order phase transition was found, and the results suggest 
there might be a second-order one. Additional calculations 
were carrierd out using the mean-field theory, which was 
found to overestimate the transition temperature by about a 
factor two.

The present note reports on Monte-Carlo simula­
tion of a classical, pure-dipolar system in two di­
mensions, whose dipolar centres are fixed on a 
simple square lattice; all dipoles are assumed to be 
identical, having a dipole moment of magnitude 
calculations showed that the ground-state for this 
system is antiferroelectric, with an energy — 2.549^1

Table 1. The ground-state antiferroelectric lattice.

Particle Coordinates Orientation

1 (0, 0) (1,0)
2 (0, i) (-1,0)
3 (b 0) (1,0)
4 (:i , i ) (-1,0)

particle-1 versus —2.17 for the ferroelectric con­
figuration. The pair potential consists of the dipole- 
dipole interaction only

<£(*,/') = (AVVi) (^-V,-) ( y j  = -  fi2Ui-Tij-Uj,

(1)

r r - l j j  + y; Tjj = 0 , (2) 

r  = Ti— Tj, r = | r | , (3)

* Eingang der 1. Fassung 16. 10. 1977.
Reprint requests to Dr. S. Romano, Department of Chem­
istry, The University, Southampton S09 5NH, England.

for dipole moments /J-j located at r,-, r ;-; II,, Uj 
are unit vectors defining their orientations, is the 
interaction sentor and I is the identity matrix.

All thermodynamic properties were expressed in 
reduced units; let A be defined by

A = ju2/a3 (4)

where a is the nearest-neighbour distance; tempera­
tures are given in units A/k and energies in units 
A particle-1 ; note that the thermodynamic proper­
ties are exclusively functions of the reduced tem­
perature. There has been recently a number of theo­
retical and computer-simulation calculations of the 
properties of a three-dimensional dipolar lattice 1-4 
whereas no calculations seem to have been carried 
out for a two-dimensional one.

The Epstein-Ewald-Kornfeld5-9 algorithm was 
used in order to achieve a faster convergence in the 
evaluation of the electrostatic energy; a similar 
treatment for a three dimensional dipolar lattice has 
been developed by Hoskins, Perram and Smith 10' n .

Results for the energy and the specific heat (in 
units k particle-1) are listed in Table 2; both the

Table 2. Results for energy and specific heat.

T -U Cv

0.025 2.5371 ±0.0002 0.42 ±0.03
0.050 2.5246 ±0.0006 0.50 ±0.09
0.100 2.4992 ±0.0005 0.56 ±0.12
0.150 2.4742 ±0.0006 0.50 ±0.04
0.200 2.449 ±0.002 0.56 ±0.07
0.250 2.4200 ±0.0004 0.48 ±0.03
0.320 2.384 ±0.002 0.54 ±0.07
0.400 2.340 ± 0.003 0.68 ±0.06
0.500 2.281 ±0.005 0.64 ±0.06
0.625 2.212 ± 0.009 0.67 ±0.11
0.700 2.15 ±0.01 0.61 ±0.09
0.750 2.096 ±0.008 0.80 ±0.05
0.800 2.04 ±0.01 0.80 ±0.10
0.850 1.981 ±0.004 0.86 ±0.07
0.900 1.93 ±0.01 0.91 ±0.08
0.950 1.87 ±0.01 0.88 ±0.09
1.000 1.828 ±0.005 0.82 ±0.09
1.0625 1.77 ±0.01 0.9 ±0.1
1.125 1.720 ±0.005 0.82 ±0.08
1.250 1.620 ±0.005 0.68 ±0.05
1.500 1.465 ±0.005 0.60 ±0.03
1.750 1.327 ±0.005 0.52 ±0.02
2.000 1.208 ±0.006 0.38 ±0.04
2.500 1.024 ±0.005 0.29 ±0.02
3.000 0.88 ±0.01 0.27 ±0.01
4.000 0.680 ±0.005 0.136i± 0.008
6.000 0.475 ±0.004 0.069 ±0.001
8.000 0.354 ±0.007 0.046 ±0.003
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statistical errors and the specific heat were calculated 
in the usual way.

The order parameters are usually defined 12-14 as
i /  n

1 = vr ( y  C/' M; 1 N \ i  = i 4

N v 2 [ 2 ( c r i i , ) 8- i ] \  (5)Y9 =

(6)

where Cj is the unit vector defining the orientation 
of the z'-th particle in the ground-state lattice. It 
could be argued that, at least at a sufficiently high 
temperature, there might exist preferred orientations 
which do not coincide with the ground-state ones, 
and the order parameter Y2 ought to be replaced by

Z2 = largest eigenvalue of the matrix
'2 (ux2) — 1 2 {uxuy) 

2 (ux Uy) 2 { Uy2 } — 1 .
We calculated these matrix elements and also {ux) 
and (uy) ; at all temperatures we have

(»*) = {Uy) = {ux Uy) = 0 ,
thus Z2 coincides with Y2, and the system does not 
turn ferroelectric; at T 0.90 we found

{ u 2) = { u 2) =  0.5.

The results for the specific heat suggest that the be­
haviour of the system is essentially harmonic at 
T ^  0.32, and anharmonicity sets in above this 
temperature.

The present results do not show any evidence of 
a discontinuity in the energy (first order phase tran­
sition) ; there might be a second-order phase transi­
tion between T = 1.125 and 7= 1.250 but the sta­
tistics of the Cv values does not allow any conclusive 
result. Some additional calculations were carried out 
using the mean-field theory (a popular tool in deal­
ing with order-disorder transitions), in order to test 
its validity.

According to the usual mean-field approxima­
tion 15' 16 Eq. (1) is averaged first over all possible 
orientations and then over coordinates or particle /', 
and the resulting pseudopotential turns out to be
w = (& (it j ) ) J = — 4.34 X cos 0  , X = (cos Q) ,

(7)
where xp is expressed in units A and X is the order 
parameter, which satisfies the consistency equation

2 jr
X

- t !  
0

= / eXI

0 exp - Z - u e

(8)

where Z is the one-particle pseudopartition function. 
This equation can be rewritten as 17

X = IAO/IoiC) C= (4.34/71 X , (9)

where 70 and are modified Bessel functions of the 
first kind; this equation can be solved numerically, 
yielding X as function of T. The values obtained in 
this way (see Table 3) were found to be larger than 
the Monte-Carlo ones.

Table 3. Order parameters.

t Monte-Carlo results Mean field
theory

y2 x

0.025 0.980 ±0.002 0.920 ±0.008 0.997
0.050 0.980 ±0.002 0.923 ±0.007 0.994
0.100 0.956 ±0.008 0.84 ±0.01 0.988
0.150 0.954 ±0.002 0.830 ±0.006 0.982
0.200 0.914 ±0.007 0.69 ±0.02 0.976
0.250 0.918 ±0.005 0.71 ±0.01 0.970
0.320 0.897 ±0.004 0.643 ± 0.008 0.961
0.400 0.86 ±0.01 0.55 ±0.02 0.950
0.500 0.84 ±0.01 0.48 ±0.02 0.936
0.625 0.80 ±0.02 0.40 ±0.02 0.918
0.700 0.76 ±0.02 0.34 ±0.02 0.906
0.750 0.64 ±0.01 0.19 ±0.01 0.898
0.800 0.50 ±0.05 0.07 ±0.02 0.889
0.850 0.48 ±0.05 0.06 ±0.03 0.880

In the frame of this mean-field approximation the 
difference in the Helmholtz free energy between or­
dered and disordered phase for our system is given 
by

AAjT = / O(0  ; (10)

when Eq. (9) is solved, X is found to be a continu­
ous function of T, thus the previous equation can be 
expanded about the point X = 0, giving

AA J _  
64 t 4 + 0 ( t 6)

=  4 - 1 -
4J34 
2 T

4.34
r

(11)

0 (X 6)

The transition temperature is determined by the 
vanishing of the coefficient of the second power of 
X 17' 18 and turns out to be T = 2.17; the vanishing 
of the third power of X is a necessary condition for 
a second-order phase transition; the coefficient of 
the fourth power is positive, as requested for sta­
bility. The mean-field treatment overestimates the 
transition temperature by a factor of about 2.
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