Raman-Spectroscopic Observation of the Σ-diads of ¹²C¹⁶O¹⁸O and ¹²C¹⁶O¹⁷O

K. Srinivasan ¹, H. Finsterhölzl, H. W. Klöckner, D. Illig, and H. W. Schrötter Sektion Physik der LMU München, Lehrstuhl J. Brandmüller

(Z. Naturforsch. 32 a, 1070-1071 [1977]; received August 3, 1977)

The Fermi resonance doublets of $^{12}\rm{C^{16}O^{18}O}$ and $^{12}\rm{C^{16}O^{17}O}$ were identified as weak Q-branches in the Raman spectrum of natural \rm{CO}_2 .

Carbon dioxide and its isotopic variants have been the subject of many experimental (IR and Raman) and theoretical spectroscopic investigations^{2, 3}. Surprisingly the Raman spectra of ${}^{12}C^{16}O_2$ and ${}^{13}C^{16}O_2$ only have been measured ⁴ and only the former has been analysed for the vibration-rotational structure ⁵.

In our program of experimental and theoretical Raman spectroscopic studies $^{6-8}$ of gases we have also recorded rovibrational spectra of various isotopic species of CO₂. Our experimental setup has been described previously $^{6-8}$. We also made use of a method for direct scanning of the isotropic part ($\sim 45 \alpha'^2$) of the scattered light⁹ in order to identify the Q-branches which may otherwise get submerged in the rotational wings.

In the isotropic part of the rovibrational spectrum of natural CO_2 in addition to several hitherto unobserved Q-branches of hot bands¹⁰ we identified four lines, the positions of which are given in Table 1, as to be the Σ -diads of ¹²C¹⁶O¹⁸O and ¹²C¹⁶O¹⁷O. Their intensities are in agreement with the natural abundance of 0.4% ¹²C¹⁶O¹⁸O and 0.07%¹²C¹⁶O¹⁷O. The position of the lines was determined

Table 1. Observed and calculated wavenumbers of the \varSigma -diads of $^{12}\rm C^{16}O^{18}O$ and $^{12}\rm C^{16}O^{17}O.$

	exp.	calc.
¹² C ¹⁶ O ¹⁸ O	1259.40 (± 0.05) 1365.88 (± 0.05)	$1259.42 \\ 1365.84$
¹² C ¹⁶ O ¹⁷ O	$\begin{array}{cccc} 1272.29 & (\pm 0.05) \\ 1376.23 & (\pm 0.2) \end{array}$	$1272.31 \\ 1376.05$

Reprint requests to Dr. H. W. Schrötter, Sektion Physik der LMU, Schellingstr. 4, D-8000 München 40, Germany.

- ¹ DAAD Post-doctoral fellow 1975-1977. Permanent address: Post-Graduate Physics Department, The American College, Madurai-625002, India.
- ² Z. Cihla and A. Chedin, J. Mol. Spectrosc. 40, 337 [1971] and references therein.

Fig. 1. Section of the purely isotropic part $(I_{||}-4/3 I_{\perp} \sim 45 \alpha'^2)$ of the vibrational-rotational Raman spectrum of natural CO₂. Gas pressure 1 atm., excitation 514.5 nm, 7 W. Slit width 1 cm⁻¹. Wavenumbers in cm⁻¹.

relative to the neighbouring rotational lines, the wavenumbers of which were calculated with rovibrational constants given by Dupré-Maguaire and Pinson³. Thus an accuracy of ± 0.05 cm⁻¹ could be obtained, with exception of the weakest line at $(1376.2\pm0.2)\,\mathrm{cm}^{-1}$. One section of the spectrum has been published earlier 9, therefore we restrict ourselves to present in Fig. 1 another section showing the lower wavenumber components of the Σ diads. The spectrum was obtained by subtracting 4/3 of the I_{\perp} component, which is proportional to $3 \gamma'^2$, from the $I_{||}$ component, which is proportional to $45 a'^2 + 4 \gamma'^2$, thus resulting in a spectrum showing only the polarized Q-branches. It is interesting to note that both lines of ¹²C¹⁶O¹⁸O are also discernible in the spectrum photographed by Stoicheff⁵, however, one was labelled as a ghost and the other one escaped attention.

Using the spectroscopic constants given by Jobard and Chedin¹¹ for ¹²C¹⁶O¹⁸O and ¹²C¹⁶O¹⁷O we calculated the Σ -diad wavenumbers ¹². Table 1 shows that they are in excellent agreement with our observation. A comparison with a preliminary scan of enriched ¹²C¹⁶O¹⁸O lends strong support to our assignments.

We thank J. Brandmüller, W. Kiefer, and G. Strey for their interest in this work and the Deutsche Forschungsgemeinschaft for financial support.

- ³ J. Dupré-Maquaire and P. Pinson, J. Mol. Spectrosc. 62, 181 [1976] and references therein.
- ⁴ H. E. Howard-Lock and B. P. Stoicheff, J. Mol. Spectrosc. 37, 321 [1971].

- ⁵ B. P. Stoicheff, Canad. J. Physics 36, 218 [1958].
- ⁶ H. W. Schrötter, J. G. Hochenbleicher, and H. W. Klöckner, 2. Fachtagung der ÖPG, Graz, Austria, October 1975.
- 7 K. Altmann, W. Klöckner, and G. Strey, Z. Naturforsch. 31 a, 1311 [1976].
- ⁸ H. Finsterhölzl, J. G. Hochenbleicher, and G. Strey, J. Raman Spectrosc. 6, 13 [1977].
- ⁹ H. W. Klöckner, W. Kiefer, and H. W. Schrötter, Appl. Spectrosc. 31, 52 [1977].
- ¹⁰ H. Finsterhölzl, H. W. Klöckner, K. Srinivasan, and H. W. Schrötter (to be published).
- ¹¹ I. Jobard and A. Chedin, J. Mol. Spectrosc. 57, 464 [1975].
- ¹² Although using Berney and Eggers ¹³ constants one arrives at almost the same values for ¹²C¹⁶O¹⁸O, we preferred Jobard and Chedin's numbers, because their derivation overcomes earlier inconsistencies pointed out by Amat and Pimbert 14.
- ¹³ C. V. Berney and D. F. Eggers, J. Chem. Phys. 40, 990 [1964].
 ¹⁴ G. Amat and M. Pimbert, J. Mol. Spectrosc. 16, 278
- [1965].