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It is shown by explicit numerical calculations, that the 
recently proposed non-local equations of motion, which can 
be supplied by a modified form of the well-known Caldirola 
equation, all admit the possibility of stationary radiationless 
motions in an attractive potential.

In a recent paper1, the following equation of 
motion for the classically radiating electron was 
proposed:

™mech C~ " (s) + mel C2{u\s_As) -  (Üu) u\s) } = K \S), 
(1)

(S) of the particle has 
been parametrized with proper time s (ds2 = 
&xv &xv) and iiX(s) =  üX(s_As) is the four-acceleration 
shifted backward in proper time by the constant 
amount As. This equation has been studied exten­
sively2 in its one-dimensional form (linear motion: 
{ux} = {Cosh W(S); 0, 0, Sinh W(s)})

mmechc2 W(s) + meic2 w(s_As) (2)
• Cosh [W(S) -  W(s _ As) ] = K(s) ,

and it could be shown that, under suitable initial 
conditions, the electron performs damped self-oscil- 
lations, if an external force K has ceased to act upon 
it.

The purely electromagnetic version
melc2{üx-  (üu)ux} = K x (3)

was studied in two earlier papers 3' 4, and we want 
to add here a third form, namely

2 ' X , 2\ Aulmmech c* u \ s) + mel c- j - ^ -  —
Au\ x

K \s) 
(4)

with me\c2 As= fZ2 and Aux : = uX(s) — uX(s- As) > the 
parameter As being held fixed again. If we put 
mmech = 0 in (4), we have a pure finite-differences 
equation, which was proposed by Caldirola 5 some 
years ago. It is, however, essential here that the dif-
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ferential term mmechc2^(s) enters the equation; 
otherwise the pure differences equation would not 
determine the particle trajectory uniquely in spa­
tially varying force fields. This deficiency of the 
finite-differences form was apologized by Caldirola 
through some indeterminacy considerations and the 
ad hoc introduction of a "transmission law". We 
prefer here the introduction of a differential term 
to make the solutions unique.

Now, as we have pointed out earlier 4, there ex­
ists the possibility of stationary, radiationless mo­
tions in equations of the kind (1) to (4). These 
must be periodic motions, because with

u\s) =UX(s_As) ÜX(s)=ÜX(s_As) (5)

all the above equations reduce to the non-radiating 
limit

m c2 uX(s) = KX(S) , resp. m c2 w(s) = K(s) . (6)

But, since for sufficiently smooth trajectories all our 
equations can be approximated by the Lorentz-Dirac 
equation

m c2 ux(s) = Kx(s) + f  Z2 {üx(s) + {u ii)u \s)} , (7)

and this equation is capable of accounting for the 
energy-momentum loss due to radiation, there must 
occur the following qualitative phenomenon: If a 
charged particle, described by one of the Eqs. (1), 
(3), or (4), approaches an attractive center, it 
looses energy and momentum by virtue of the emis­
sion of radiation, but if the radiating particle is 
close enough to the center, the motion becomes more 
and more radiationless and ultimately goes over in a 
completely radiationless, periodic trajectory around 
the attractive center.

Clearly, it is exactly this picture, which one has 
in mind when one thinks of an electron falling down 
to the lowest Bohr's orbit in a hydrogen atom under 
emission of radiation; but it is usually argued that 
only quantum mechanics is able to explain, why the 
electron does not plunge directly into the proton but 
is held (on an average) apart from it in the distance 
of Bohr's radius.

In contradiction to this generally accepted point 
of view, we have found radiationless periodic mo­
tions for our classical equations in the attractive 
potential 0

Z* „  „ 3<Z> ZZ*r
Vr02 + r2

=> K(r) = - Z
+ r¥3

(8)
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where we have restricted ourselves to one-dimen­
sional motion (in radial direction). We have in­
vestigated in this respect all equations mentioned 
above, but for the sake of brevity we will present 
here those results refferring to the modified Caldi- 
rola equation (4). That equation can be written for 
one-dimensional motion as

771 C"
ramecii c- W(S) + ^ Sinh [w(s) -  w(s_l)s)] = K(s) ,

(9)
where K must be taken from (8) and the connection 
between the spatial coordinate r and the auxiliary 
velocity W(S) is

dr
— = Sinh w[S) . (10)ds

The laboratory time T := c t  is obtainable from 
d T

= Cosh M7(S) . (11)ds

The subsequent figure exhibits a plot of the solu­
tions for Eqs. (9) to (11), where the horizontal 
axis shows the lab time in reduced units (T/Ase) 
and the vertical axis the spatial coordinate r in re­
duced units (r/Ase). The mass ratio was chosen to 
be me]/mmech = 0, 1; where /nmech + ^ei = ^exp and 
7nexp c2 Ase = |  Z2 was also used (=> As = 22 Ase). 
Moreover, — Z = + Z* = jZ = electron charge and 
r0 = Ase . We have assumed an initial separation
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of r;n = 23 Ase between the electron and the potential 
minimum (at r = 0) and that the particle be at rest 
before it is released at T = 0. The dotted curve is the 
non-radiating limit (6), which clearly yields un­
damped oscillations. The solid curve is the solution 
of our problem (9) to (11) and exhibits quite 
clearly that the radiating particle looses energy by 
radiation during the first two or three oscillations 
but is then going over in a stable, radiationless, 
periodic motion around the potential minimum 
(straight horizontal line in the middle of the figure).

These quite astonishing results suggest further 
questions, which are currently under investigation: 
How many stable states are possible in a given po­
tential well? Are they forming a discrete set? Are 
there metastable states? Which initial conditions 
lead to a prescribed final stationary state? Are there 
also stationary states in more than one dimension?

4 M. Sorg, Z. Naturforsch. 31 a, 1133 [1976].
5 P. Caldirola, Nuovo Cim. 3, Suppl. 2, 297 [1956].


