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It is shown that a plasma containing randomly distributed
non-interacting upper-hybrid waves can become unstable
against ion quasi-modes, The growth rate of the instability
is presented.

In previous papers !: 2, it has been shown that the
upper-hybrid turbulence consisting of an ensemble
of random-phased upper-hybrid waves can become
modulationally unstable with respect to low-fre-
quency ion-cyclotron, lower-hybrid !, and adiabatic
perturbations 2. The latter is valid for the quasi-
static régime.

In this letter, we consider the problem of modu-
lation of upper-hybrid turbulence by low-frequency
perturbations (£2, g). A general dispersion relation
which is valid for the quasi-static ((R2/qvni| €1),
the inertial ((2/qvy;!>1), and the transitional
((2/quvr; ~1) regimes is obtained. Specificially,
we shall be concerned with the last régime, namely
the problem of coupling of upper-hybrid turbulence
with ion quasi-modes. For the latter type of pertur-
bations, the two fluid description fails and one
should retain the Vlasov description.

In what follows, the high-frequency upper-hybrid
waves shall be allowed to have a small component
E. along the external magnetic field ByZ so that
they may couple with the ion quasi-modes. The
dynamics of the upper-hybrid turbulence is gov-
erned by a wave kinetic equation »*. The change of
the upper-hybrid turbulence distribution N in the
presence of ion quasi-mode perturbations 7, is given
by!
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where N, °=(/E;%2)/4aw; is the unperturbed
distribution, and
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is the characteristic frequency of the turbulence.

Here vte, ®pe, and @, are respectively the thermal
velocity, plasma and gyrofrequencies of the elec-
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trons. The group velocity of the high-frequency
waves is given by

Ve =%[3k i, vpe 0pefwp (1 =3 w5 [w3)],  (2)

where /. = vp./o,. is the electron Debye length. We
note that for 3 w3, < wj,, the upper-hybrid modes
have positive group dispersion, whereas for wj,
< 3w, the modes have negative group disper-
sion. In the following, we consider only the upper-
hybrid waves with positive group dispersion, name-
ly 3wz < W3 .

The charge density perturbation g, in the pres-
ence of the modified distribution (1) is obtained
from the electron Vlasov equation. We find

470, = _qe Ze{(p‘i‘(ppe) (3)

where @ is the ambipolar potential, and the pon-
deromotive potential @, is given by

D= -2 aewy Ni/me (0} —wZ) . (4)
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In (3), 7.=(g%)2G (2/gquvyr.) is the electron
susceptibility, and G is the plasma dispersion func-
tion. The electrons are assumed to be highly mag-
netized.
From the linearized ion Vlasov equation, we ob-
tain
dagi=-¢u?, (5)

where y; = (g4;) ™2 G (£2/qvr) is the ion suscepti-
bility, and ions are assumed to be unmagnetized.
The ponderomotive potential @,; of the ions is
smaller than that of the electrons by a factor m./m;
and is therefore neglected.

Combining (3) and (5), and using Poisson’s
equation ¢2 P =47 (0;+ 0.), one gets

g?)= — Xe (ppo/"-\s (6)
where ¢ =1 + . + 7i . Inserting (6) into (3), we get
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Combining (1) and (7), we obtain the dispersion
relation

L @7 (1+7) (05 +0%)

1= — 5
16 7 n, m & Wie
. [ a:3N:/3k.
(@—gu) ©

where the summation over k has been replaced by
an integration in the usual manner (i.e., 2 dk—
k

L/2 z [ dk, where L is the size of the system). Equa-
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tion (8) is the most general dispersion relation
describing the interaction of upper-hybrid turbu-
lence with low-frequency perturbations.

For |2|<quvr., we have z.=(g4)%
now let

N0 = (27a)V2 (W[4 a ope) (ky L) !
texp [ — “‘ = I‘o) 2;"’2 klg]

We

in (8) and assume that the spectrum of upper-hybrid
turbulence is sufficiently peaked around k; [i.e.,
10— qruy| >3 qzhe kyvre 0pef (050 +3) V2, where
ug=vg(k=Fky) ], we then obtain from (8)

Q—qrug=1i(3/87)12 q, 4, 0y,
W 1,2(]+zi\1.'3
or) (7)o

where k; is the spread, k; is the mean wave vector,
IV is the total energy of the turbulence spectrum,
and 442 =owg oy (03 —3wE) with 0f =wk
+ -"ch .
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Letting 2 = g, uy+1y, we obtain the growth rate
7= (3/8=)12 qr e (W/ngTe)'? wpe AR,

e
€ D=q 1y ’

where the frequency shift caused by the turbulence
is neglected. When the argument of #; is near unity,
that is 3 kg4, vpe = vy, which can occur for
kyte €1, we find for T. = T},

y ~ 0.9 (3/8 x) 12 grhe (WingTe)! 2 mped.

(10)

(11)

In conclusion, we have shown that a spectrum of
upper-hybrid mode turbulence is unstable when the
group velocity of the turbulence mode is approxi-
mately equal to the ion thermal speed.
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