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It is shown that a plasma containing randomly distributed 
non-interacting upper-hybrid waves can become unstable 
against ion quasi-modes. The growth rate of the instability 
is presented.

In previous papers 2, it has been shown that the 
upper-hybrid turbulence consisting of an ensemble 
of random-phased upper-hybrid waves can become 
modulationally unstable with respect to low-fre­
quency ion-cyclotron, lower-hybrid 1, and adiabatic 
perturbations2. The latter is valid for the quasi- 
static regime.

In this letter, we consider the problem of modu­
lation of upper-hybrid turbulence by low-frequency 
perturbations (Q, q ). A general dispersion relation 
which is valid for the quasi-static (IQ/qv^i ', ^  1), 
the inertial (' Q/q Vji \ >  1), and the transitional 
(Q/qvTi ~  1) regimes is obtained. Specificially, 
we shall be concerned with the last regime, namely 
the problem of coupling of upper-hybrid turbulence 
with ion quasi-modes. For the latter type of pertur­
bations, the two fluid description fails and one 
should retain the Vlasov description.

In what follows, the high-frequency upper-hybrid 
waves shall be allowed to have a small component 
Ez along the external magnetic field B0 z so that 
they may couple with the ion quasi-modes. The 
dynamics of the upper-hybrid turbulence is gov­
erned by a wave kinetic equation 3. The change of 
the upper-hybrid turbulence distribution Nk in the 
presence of ion quasi-mode perturbations ne is given 
by 1

cok ne dNk°/dk 
------q' j) --------- , (i)2 n0 U — q-Vg

N ,=  -

where Nk° = ( Ek° 2)/4< ti ojk is the unperturbed 
distribution, and

Oil = Wpe + COce + 3 k2 üfe Wp6/ (C0pe -  3 0J2e)

is the characteristic frequency of the turbulence. 
Here vje, cope, and coce are respectively the thermal 
velocity, plasma and gyrofrequencies of the elec-
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trons. The group velocity of the high-frequency 
waves is given by

Vg = X [3 k T̂e OJpe/(Ok( 1 -  3 <'J2e/co2e) ] , (2)

where / e = t>Te/wpe is the electron Debye length. We 
note that for 3 co2e the upper-hybrid modes
have positive group dispersion, whereas for ojpe 

3 o>ce, the modes have negative group disper­
sion. In the following, we consider only the upper- 
hybrid waves with positive group dispersion, name­
ly 3 COJe OJ pe .

The charge density perturbation Qe in the pres­
ence of the modified distribution (1) is obtained 
from the electron Vlasov equation. We find

4 ^ e = -  q* Ze (<P + <Z>»e) (3)

where 0  is the ambipolar potential, and the pon- 
deromotive potential 0 pe is given by

= -  2  n e ojk Nk/me (ojk -  co2e) . (4) 
k

In (3), %e= (qhe)~2 G'(Q/q vxe) is the electron 
susceptibility, and G is the plasma dispersion func­
tion. The electrons are assumed to be highly mag­
netized.

From the linearized ion Vlasov equation, we ob­
tain

4 ti = — q2 , (5)

where Xi — 2 G' (Q/q v^i) is the ion suscepti­
bility, and ions are assumed to be unmagnetized. 
The ponderomotive potential of the ions is
smaller than that of the electrons by a factor me/m; 
and is therefore neglected.

Combining (3) and (5), and using Poisson's 
equation q2 0  = 4 n (o, + £>e) , one gets

$ = - X e  &Pe/e, (6)

where e = l+Xe + Zi- Inserting (6) into (3), we get

TXe( 1+Zi)
n0 4 ti nn e e <Pr (7)

Combining (1) and (7), we obtain the dispersion 
relation

q2 Xe (1 +yj) (C0̂ e +^ce)1 -
16 ti n0 mee
f  q-3Nk°/dk

cope

dA;, (8)

where the summation over k has been replaced by
an integration in the usual manner (i.e., .2" d >

k
L/2 ti f  d&, where L is the size of the system). Equa-
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tion (8) is the most general dispersion relation 
describing the interaction of upper-hybrid turbu­
lence with low-frequency perturbations.

For Q [^qw Y e, we have Xe=(g^c) ~2- We 
now let

■ e x p [ - (k - k 0)2/2 kt2]

in (8) and assume that the spectrum of upper-hybrid 
turbulence is sufficiently peaked around k0 [i. e.,
j Q -  qx u0 \ >  3 qx kt z;Te 0Jpe/ (oj2e + cofe)1/2, where 
u0 = vg(k = k0) ], we then obtain from (8)

Q -  qx u0 = ± i (3/8 n )1/2 qx ;Le cor

£

'pe 
1/2

(9)

where kt is the spread, k0 is the mean wave vector, 
W is the total energy of the turbulence spectrum,
and 4 A2 = a)H ojpe/ (w -  3 co 2e) with to h = co 2e

7 = (3/8 n )1/2 qx Xe (ir/n0 Te) ^  cope A Re 
l + xAV12

£ / O = qx u0

Letting Q = qxu0 + iy, we obtain the growth rate

(10)

where the frequency shift caused by the turbulence 
is neglected. When the argument of /j is near unity, 
that is 3 /cq Ae t>Te f  j ; , which can occur for 
k0 1, we find for

y «  0.9 (3/8 n) ^  qx (W/n0 Te) 1/2 cope A . (11)

+ OJj

In conclusion, we have shown that a spectrum of 
upper-hybrid mode turbulence is unstable when the 
group velocity of the turbulence mode is approxi­
mately equal to the ion thermal speed.
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