Notizen 335

Kinetic Modulational Instability of Upper-hybrid Turbulence

P. K. Shukla, M. Y. Yu, and S. G. Tagare

Institut für Theoretische Physik der Ruhr-Universität Bochum, 4630 Bochum

(Z. Naturforsch. 32 a, 335-336 [1977]; received January 25, 1977)

It is shown that a plasma containing randomly distributed non-interacting upper-hybrid waves can become unstable against ion quasi-modes. The growth rate of the instability is presented.

In previous papers ^{1, 2}, it has been shown that the upper-hybrid turbulence consisting of an ensemble of random-phased upper-hybrid waves can become modulationally unstable with respect to low-frequency ion-cyclotron, lower-hybrid ¹, and adiabatic perturbations ². The latter is valid for the quasistatic régime.

In this letter, we consider the problem of modulation of upper-hybrid turbulence by low-frequency perturbations (Ω, q) . A general dispersion relation which is valid for the quasi-static $(|\Omega/q \, v_{\rm Ti}| \ll 1)$, the inertial $(|\Omega/q \, v_{\rm Ti}| > 1)$, and the transitional $(|\Omega/q \, v_{\rm Ti}| \sim 1)$ regimes is obtained. Specificially, we shall be concerned with the last régime, namely the problem of coupling of upper-hybrid turbulence with ion quasi-modes. For the latter type of perturbations, the two fluid description fails and one should retain the Vlasov description.

In what follows, the high-frequency upper-hybrid waves shall be allowed to have a small component E_z along the external magnetic field $B_0 \hat{z}$ so that they may couple with the ion quasi-modes. The dynamics of the upper-hybrid turbulence is governed by a wave kinetic equation 1,3 . The change of the upper-hybrid turbulence distribution \tilde{N}_k in the presence of ion quasi-mode perturbations \tilde{n}_e is given by 1

$$\tilde{N}_{k} = -\frac{\omega_{k}}{2} \frac{\tilde{n}_{e}}{n_{0}} q \cdot \frac{\partial N_{k}^{0} / \partial k}{\Omega - q \cdot v_{g}}, \qquad (1)$$

where $N_k{}^0 = \langle |E_k{}^0|^2 \rangle / 4 \pi \omega_k$ is the unperturbed distribution, and

$$\omega_k^2 = \omega_{\rm pe}^2 + \omega_{\rm ce}^2 + 3\;k^2\;v_{\rm Te}^2\;\omega_{\rm pe}^2/(\omega_{\rm pe}^2 - 3\;\omega_{\rm ce}^2)$$

is the characteristic frequency of the turbulence. Here $v_{\rm Te}$, $\omega_{\rm pe}$, and $\omega_{\rm ce}$ are respectively the thermal velocity, plasma and gyrofrequencies of the elec-

Reprint requests to Dr. P. K. Shukla, Theoretische Physik I, Ruhr-Universität Bochum, Universitätsstr. 150, D-4630 Bochum.

trons. The group velocity of the high-frequency waves is given by

$$v_{\rm g} = \hat{x} \left[3 k \lambda_{\rm e} v_{\rm Te} \, \omega_{\rm pe} / \omega_k (1 - 3 \, \omega_{\rm ce}^2 / \omega_{\rm pe}^2) \right],$$
 (2)

where $\lambda_{\rm e} = v_{\rm Te}/\omega_{\rm pe}$ is the electron Debye length. We note that for $3\,\omega_{\rm ce}^2 \ll \omega_{\rm pe}^2$, the upper-hybrid modes have positive group dispersion, whereas for $\omega_{\rm pe}^2 \ll 3\,\omega_{\rm ce}^2$, the modes have negative group dispersion. In the following, we consider only the upper-hybrid waves with positive group dispersion, namely $3\,\omega_{\rm ce}^2 \ll \omega_{\rm pe}^2$.

The charge density perturbation ϱ_e in the presence of the modified distribution (1) is obtained from the electron Vlasov equation. We find

$$4\pi \varrho_{\rm e} = -q^2 \chi_{\rm e} \left(\Phi + \Phi_{\rm pe} \right) \tag{3}$$

where Φ is the ambipolar potential, and the ponderomotive potential Φ_{pe} is given by

$$\Phi_{\rm pe} = -\sum_{k} \pi e \,\omega_k \,\tilde{N}_k / m_{\rm e} (\omega_k^2 - \omega_{\rm ce}^2) \,. \tag{4}$$

In (3), $\chi_{\rm e}=(q\,\lambda_{\rm e})^{-2}\,G'\,(\Omega/q\,v_{\rm Te})$ is the electron susceptibility, and G is the plasma dispersion function. The electrons are assumed to be highly magnetized.

From the linearized ion Vlasov equation, we obtain

$$4 \pi \rho_{\rm i} = -q^2 \chi_{\rm i} \Phi \,, \tag{5}$$

where $\chi_{\rm i} = (q \, \lambda_{\rm i})^{-2} \, G' \, (\Omega/q \, v_{\rm Ti})$ is the ion susceptibility, and ions are assumed to be unmagnetized. The ponderomotive potential $\Phi_{\rm pi}$ of the ions is smaller than that of the electrons by a factor $m_{\rm e}/m_{\rm i}$ and is therefore neglected.

Combining (3) and (5), and using Poisson's equation $q^2 \Phi = 4 \pi (\varrho_i + \varrho_e)$, one gets

$$\Phi = -\chi_{\rm e} \, \Phi_{\rm ne} / \varepsilon \,, \tag{6}$$

where $\varepsilon = 1 + \chi_e + \chi_i$. Inserting (6) into (3), we get

$$\frac{\tilde{n}_{\rm e}}{n_0} = \frac{q^2 \chi_{\rm e} (1 + \chi_{\rm i})}{4 \pi n_0 \, {\rm e} \, \varepsilon} \, \varPhi_{\rm pe} \,. \tag{7}$$

Combining (1) and (7), we obtain the dispersion relation

$$1 = \frac{L}{16 \pi n_0} \frac{q^2 \chi_e (1 + \chi_i)}{m_e \varepsilon} \frac{(\omega_{pe}^2 + \omega_{ce}^2)}{\omega_{pe}^2}$$

$$\cdot \int \frac{q \cdot \partial N_k^0 / \partial k}{(\Omega - q \cdot v_g)} dk, \qquad (8)$$

where the summation over k has been replaced by an integration in the usual manner (i. e., $\sum_{k} dk \rightarrow L/2 \pi \int dk$, where L is the size of the system). Equa-

336 Notizen

tion (8) is the most general dispersion relation describing the interaction of upper-hybrid turbulence with low-frequency perturbations.

For $|\Omega| \ll q \, v_{
m Te}$, we have $\chi_{
m e} = (q \, \hat{\lambda}_{
m e})^{-2}$. We now let

$$N_k{}^0 pprox (2~\pi)^{1/2}~(W/4~\pi~\omega_{
m pe})~(k_{
m t}~L)^{-1} \\ \cdot \exp{[~-(k-k_{
m 0})^{\,2}/2~k_{
m t}^{\,2}]}$$

in (8) and assume that the spectrum of upper-hybrid turbulence is sufficiently peaked around k_0 [i. e., $|\Omega-q_xu_0|>3~q_x\lambda_{\rm e}\,k_tv_{\rm Te}\,\omega_{\rm pe}/(\omega_{\rm pe}^2+\omega_{\rm ce}^2)^{1/2}$, where $u_0=v_{\rm g}\,(k=k_0)$], we then obtain from (8)

$$\begin{split} \Omega - q_x \, u_0 &= \pm i \, (3/8 \, \pi)^{1/2} \, q_x \, \lambda_{\rm e} \, \omega_{\rm pe} \\ &\cdot \left(\frac{W}{n_0 \, T_{\rm e}} \right)^{1/2} \, \left(\frac{1 + \chi_{\rm i}}{\varepsilon} \right)^{1/2} \, A \,, \qquad (9 \end{split}$$

where k_t is the spread, k_0 is the mean wave vector, W is the total energy of the turbulence spectrum, and $4A^2 = \omega_{\rm H} \, \omega_{\rm pe} / (\omega_{\rm pe}^2 - 3 \, \omega_{\rm ce}^2)$ with $\omega_{\rm H}^2 = \omega_{\rm pe}^2 + \omega_{\rm ce}^2$.

P. K. Shukla and M. Y. Yu, Phys. Lett. 57 A, 57 [1976].
 K. H. Spatschek, Phys. Lett. 57 A, 333 [1976].

Letting
$$\Omega = q_x u_0 + i \gamma$$
, we obtain the growth rate
$$\gamma = (3/8 \pi)^{1/2} q_x \lambda_{\rm e} (W/n_0 T_{\rm e})^{1/2} \omega_{\rm pe} A R_{\rm e}$$

$$\cdot \left[\left(\frac{1 + \chi_{\rm i}}{\varepsilon} \right) \right]_{\Omega = q_x u_0}^{1/2} , \qquad (10)$$

where the frequency shift caused by the turbulence is neglected. When the argument of $\chi_{\rm i}$ is near unity, that is $3\,k_0\,\lambda_{\rm e}\,v_{\rm Te}\approx v_{\rm Ti}\,,$ which can occur for $k_0\,\lambda_{\rm e} \ll 1$, we find for $T_{\rm e} \approx T_{\rm i}\,,$

$$\gamma \approx 0.9 (3/8 \, \pi)^{1/2} \, q_x \, \lambda_e \, (W/n_0 \, T_e)^{1/2} \, \omega_{\rm pe} \, A$$
. (11)

In conclusion, we have shown that a spectrum of upper-hybrid mode turbulence is unstable when the group velocity of the turbulence mode is approximately equal to the ion thermal speed.

Acknowledgement

This work has been performed under the auspices of the Sonderforschungsbereich 162 Plasmaphysik Bochum/Jülich and the Humboldt Foundation.

³ B. B. Kadomtsev, Plasma Turbulence, Academic Press, London 1965, p. 34.