Notizen

Renormalization Group Approach to a One-Dimensional Cooperative T–e Jahn-Teller System

S. Brühl and E. Sigmund

Institute of Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, 7000 Stuttgart 80, Germany

(Z. Naturforsch. 32 a, 111-112 [1977]; received December 22, 1976)

A linear chain of T-e molecules exhibiting the cooperative Jahn-Teller effect is considered. Following Nauenberg's¹ treatment of the one-dimensional Ising model a renormalization group approach is used. The series-expansion of the free energy is put into a closed form.

We consider a one-dimensional chain of identical unit cells of cubic symmetry, each of which represents a T - e Jahn-Teller center. This means that in each unit cell a triply degenerate electronic state interacts with a doubly degenerate vibrational mode. By an exponential transformation the local electronphonon coupling is transcribed into a nonlocal electron-electron interaction ^{2, 3}. If we restrict ourselves to a coupling between nearest neighbours the resulting Hamiltonian reads

$$H = -J \sum_{n} (\tau_n \, \tau_{n+1} + \frac{1}{3} \, \Gamma_n \, \Gamma_{n+1}) \tag{1}$$

where τ and Γ are diagonal electronic operators with the eigenvalues -1, 0, 1 and 1, 1, -2 respectively. J is the coupling constant. The 3×3 transfer matrix of this system takes the form

 $P = \begin{cases} e^{2K} & e^{-K} & e^{-K} \\ e^{-K} & e^{2K} & e^{-K} \\ e^{-K} & e^{-K} & e^{2K} \end{cases}$ (2)

with

$$K = \frac{2}{3} J (k_B T = 1)$$
.

Following the method of Nauenberg ¹ and others ^{4, 5} we have to look for a renormalization transformation $K \rightarrow K'$ such that

$$P^{2}(K) = e^{2g(K)} P(K') .$$
(3)

In this way a partial summation over the even lattice points n = 2, 4, ... is performed and the system is reduced to the N/2 odd lattice points with an effective coupling constant K'. From exprs. (2) and (3) we get the relations

$$K' = \frac{1}{3} \ln \frac{e^{3K} + 2 e^{-3K}}{2 + e^{-3K}}$$
(4)

Reprint requests to Dr. E. Sigmund, Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-7000 Stuttgart 80, Germany. and

$$g(K) = \frac{1}{2}K' + \frac{1}{2}K + \frac{1}{2}\ln\left(2 + e^{-3K}\right).$$
 (5)

Just as for the one dimensional Ising model the fixed points of Eq. (4) are $K^* = 0$ and $K^* = \infty$ with the eigenvalues $\lambda = 0$ and $\lambda = 1$ respectively. This means that there exists no phase transition for our system.

Applying the renormalization transformation n times, the mapping from the initial coupling constant $K^{(0)} = K$ to the final value $K^{(n)}$ is given by

$$K^{(n)} = \frac{1}{3} \ln \frac{\exp\left\{3 K^{(n-1)}\right\} + 2 \exp\left\{-3 K^{(n-1)}\right\}}{2 + \exp\left\{-3 K^{(n-1)}\right\}}.$$
(6)

In order to solve this recurrence relation we perform a transformation to a new variable. In accordance to Ref.¹ we require

$$\zeta' = \zeta^2 \,. \tag{7}$$

Inserting the formal ansatz

$$\zeta = (a_0 + a_1 e^{3K}) / (b_0 + b_1 e^{3K})$$
(8)

into Eq. (7) and comparing with Eq. (4) the transformation is found to be

$$\zeta = (e^{3K} - 1) / (e^{3K} + 2) . \tag{9}$$

Then the solution of the recurrence formula (6) takes the form

$$K^{(n)} = \frac{1}{3} \ln \frac{1+2\zeta^{2^n}}{1-\zeta^{2^n}}.$$
 (10)

As shown in Ref.¹ the free energy per lattice point in the thermodynamic limit can be given in a series expansion

$$f(K) = \sum_{n=0}^{\infty} g(K^{(n)})/2^n$$

which in our case leads to

$$f(K) = \frac{1}{2}K + \frac{3}{2}\sum_{n=1}^{\infty}\frac{K^{(n)}}{2^n} + \frac{1}{2}\sum_{n=0}^{\infty}\frac{1}{2^n}$$
(11)
$$\cdot \ln\left(2 + e^{-3K^{(n)}}\right).$$

With help of solution (10) one gets

$$f(K) = -K + \ln 3 + \ln \prod_{n=0}^{\infty} \left(\frac{1 + \zeta^{2^n}}{1 - \zeta^{2^n}} \right)^{\binom{1}{2}^{n+1}}.$$
 (12)

The product over *n* can be transcribed into the closed form $1/(1-\zeta)$ and the final result is

$$f(K) = \ln \left(e^{2K} + 2 e^{-K} \right) \,. \tag{13}$$

This expression can also be obtained using the conventional transfer matrix method

$$f(K) = \lim_{N \to \infty} \frac{1}{N} \ln \operatorname{Trace}(P^N) = \ln \lambda_{\operatorname{Max}} \quad (14)$$

where $\lambda_{\text{Max}} = e^{2K} + 2 e^{-K}$ is the largest eigenvalue of *P*.

So far the linear T - e electron-phonon chain is the only nontrivial cooperative Jahn-Teller system,

- ¹ M. Nauenberg, J. Math. Physics 16, 703 [1975].
- ² M. Wagner, to be published.
- ³ G. A. Gehring and K. A. Gehring, Rep. Progr. Phys. 38, 1 [1975].

which is solved exactly by a renormalization group approach. Up to now the more complicated system consisting of E - e and T - t molecules cannot be solved in an analytic form by this method. There numerical techniques are required.

- ⁴ M. Nauenberg and B. Nienhuis, Phys. Rev. Lett. 33, 1598 [1974].
- ⁵ Th. Niemeijer and Th. W. Ruijgrok, Physica 81 A, 427 [1975].