Renormalization Group Approach to a One-Dimensional Cooperative T-e Jahn-Teller System

S. Brühl and E. Sigmund

Institute of Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, 7000 Stuttgart 80, Germany
(Z. Naturforsch. 32 a, 111-112 [1977] ; received December 22, 1976)

A linear chain of $T-e$ molecules exhibiting the cooperative Jahn-Teller effect is considered. Following Nauenberg's ${ }^{1}$ treatment of the one-dimensional Ising model a renormalization group approach is used. The series-expansion of the free energy is put into a closed form.

We consider a one-dimensional chain of identical unit cells of cubic symmetry, each of which represents a $T-e$ Jahn-Teller center. This means that in each unit cell a triply degenerate electronic state interacts with a doubly degenerate vibrational mode. By an exponential transformation the local electronphonon coupling is transcribed into a nonlocal elec-tron-electron interaction ${ }^{2,3}$. If we restrict ourselves to a coupling between nearest neighbours the resulting Hamiltonian reads

$$
\begin{equation*}
H=-J \sum_{n}\left(\tau_{n} \tau_{n+1}+\frac{1}{3} \Gamma_{n} \Gamma_{n+1}\right) \tag{1}
\end{equation*}
$$

where τ and Γ are diagonal electronic operators with the eigenvalues $-1,0,1$ and $1,1,-2$ respectively. J is the coupling constant. The 3×3 transfer matrix of this system takes the form

$$
P=\left\{\begin{array}{lll}
e^{2 K} & e^{-K} & e^{-K} \tag{2}\\
e^{-K} & e^{2 K} & e^{-K} \\
e^{-K} & e^{-K} & e^{2 K}
\end{array}\right\}
$$

with

$$
K=\frac{2}{3} J\left(k_{B} T=1\right) .
$$

Following the method of Nauenberg ${ }^{1}$ and others ${ }^{4,5}$ we have to look for a renormalization transformation $K \rightarrow K^{\prime}$ such that

$$
\begin{equation*}
P^{2}(K)=e^{2 g(K)} P\left(K^{\prime}\right) . \tag{3}
\end{equation*}
$$

In this way a partial summation over the even lattice points $n=2,4, \ldots$ is performed and the system is reduced to the $N / 2$ odd lattice points with an effective coupling constant K^{\prime}. From exprs. (2) and (3) we get the relations

$$
\begin{equation*}
K^{\prime}=\frac{1}{3} \ln \frac{e^{3 K}+2 e^{-3 K}}{2+e^{-3 K}} \tag{4}
\end{equation*}
$$

Reprint requests to Dr. E. Sigmund, Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-7000 Stuttgart 80, Germany.
and

$$
\begin{equation*}
g(K)=\frac{1}{2} K^{\prime}+\frac{1}{2} K+\frac{1}{2} \ln \left(2+e^{-3 K}\right) . \tag{5}
\end{equation*}
$$

Just as for the one dimensional Ising model the fixed points of Eq. (4) are $K^{*}=0$ and $K^{*}=\infty$ with the eigenvalues $\lambda=0$ and $\lambda=1$ respectively. This means that there exists no phase transition for our system.

Applying the renormalization transformation n times, the mapping from the initial coupling constant $K^{(0)}=K$ to the final value $K^{(n)}$ is given by
$K^{(n)}=\frac{1}{3} \ln \frac{\exp \left\{3 K^{(n-1)}\right\}+2 \exp \left\{-3 K^{(n-1)}\right\}}{2+\exp \left\{-3 K^{(n-1)}\right\}}$.
In order to solve this recurrence relation we perform a transformation to a new variable. In accordance to Ref. ${ }^{1}$ we require

$$
\begin{equation*}
\zeta^{\prime}=\zeta^{2} . \tag{7}
\end{equation*}
$$

Inserting the formal ansatz

$$
\begin{equation*}
\zeta=\left(a_{0}+a_{1} e^{3 K}\right) /\left(b_{0}+b_{1} e^{3 K}\right) \tag{8}
\end{equation*}
$$

into Eq. (7) and comparing with Eq. (4) the transformation is found to be

$$
\begin{equation*}
\zeta=\left(e^{3 K}-1\right) /\left(e^{3 K}+2\right) . \tag{9}
\end{equation*}
$$

Then the solution of the recurrence formula (6) takes the form

$$
\begin{equation*}
K^{(n)}=\frac{1}{3} \ln \frac{1+2 \zeta^{2 n}}{1-\zeta^{2^{n}}} . \tag{10}
\end{equation*}
$$

As shown in Ref. ${ }^{1}$ the free energy per lattice point in the thermodynamic limit can be given in a series expansion

$$
f(K)=\sum_{n=0}^{\infty} g\left(K^{(n)}\right) / 2^{n}
$$

which in our case leads to

$$
\begin{align*}
& f(K)=\frac{1}{2} K+\frac{3}{2} \sum_{n=1}^{\infty} \frac{K^{(n)}}{2^{n}}+\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{2^{n}} \tag{11}\\
& \cdot \ln \left(2+e^{-3 K^{(n)}}\right) .
\end{align*}
$$

With help of solution (10) one gets

$$
\begin{equation*}
f(K)=-K+\ln 3+\ln \prod_{n=0}^{\infty}\left(\frac{1+\zeta^{2^{n}}}{1-\zeta^{2^{n}}}\right)^{\left(\frac{1}{2}\right)^{n+1}} \tag{12}
\end{equation*}
$$

The product over n can be transcribed into the closed form $1 /(1-\zeta)$ and the final result is

$$
\begin{equation*}
f(K)=\ln \left(e^{2 K}+2 e^{-K}\right) . \tag{13}
\end{equation*}
$$

This expression can also be obtained using the conventional transfer matrix method

$$
\begin{equation*}
f(K)=\lim _{N \rightarrow \infty} \frac{1}{N} \ln \operatorname{Trace}\left(P^{N}\right)=\ln \lambda_{\mathrm{Max}} \tag{14}
\end{equation*}
$$

where $\lambda_{\text {Max }}=e^{2 K}+2 e^{-K}$ is the largest eigenvalue of P.

So far the linear $T-e$ electron-phonon chain is the only nontrivial cooperative Jahn-Teller system,
${ }^{1}$ M. Nauenberg, J. Math. Physics 16, 703 [1975].
M. Wagner, to be published.
G. A. Gehring and K. A. Gehring, Rep. Progr. Phys. 38, 1 [1975].
which is solved exactly by a renormalization group approach. Up to now the more complicated system consisting of $E-e$ and $T-t$ molecules cannot be solved in an analytic form by this method. There numerical techniques are required.
${ }^{4}$ M. Nauenberg and B. Nienhuis, Phys. Rev. Lett. 33, 1598 [1974].
${ }^{5}$ Th. Niemeijer and Th. W. Ruijgrok, Physica 81 A, 427 [1975].

