Notizen 107

Potentiometric Studies of the Lithium Interaction with Urea and N-Methylacetamide in Aqueous Solution

O. F. Schäfer

Institut für Physikalische Chemie der RWTH Aachen

(Z. Naturforsch. 32 a, 107-108 [1977]; received November 19, 1976)

Potentiometric measurements of the K^+ and Li^+ activity in the presence of 4M urea or N-methylacetamide have been performed. The results support the view that Li^+ associates with amides.

The tendency of lithium ions to interact with amides is known to be considerable ^{1, 2}. Li⁺ interactions with polypeptides ³⁻⁵ and a protein ⁶ have also been reported. Both spectroscopic data and theoretical calculations indicate that Li⁺ binds to the amide carbonyl oxygen ⁷. Such studies possibly offer a means of understanding the mode of action of Li salts as denaturants for biopolymers.

It appeared likely that further evidence for an association of Li⁺ with amides can be found from potentiometric data. Therefore measurements of the Li⁺ activity in strong aqueous solutions of urea and N-methylacetamide (NMA) using an ion selective electrode were carried out. For comparison purposes the behaviour of K⁺ was examined, too.

Experimental

Since a laboratory-made homogeneous matrix membrane electrode (details about this kind of electrodes are described elsewhere 8) made from 4% (w/w) valinomycin, 50% diphenyl ether, and 46% poly (vinyl isobutyl ether) exhibited a very sluggish response in the presence of urea and NMA, a K⁺ sensitive glass electrode and a Na+ sensitive glass electrode (for the Li+ determinations) were used. These electrodes required a few minutes for the attainment of steady potentials. Electrode blanks of the electrodes 9602/8 and 9601/8, that is stems and bulbs, were provided by Jenaer Glaswerk Schott u. Gen., Mainz. The internal fillings were 10⁻² M in KCl and 10⁻⁴ M in KOH or 10⁻² M in LiCl and 10⁻⁴ M in LiOH, respectively. As inner reference electrodes silver-silver chloride electrodes were used. In contrast to the Li⁺ electrode the K⁺ electrode exhibited a $p_{\rm H}$ dependent slope factor at higher $p_{\rm H}$ values (p_H 11, 52.5 mV/decade). E.m.f. measurements were carried out at 25 °C in a U-shaped glass

Reprint requests to Dr. O. F. Schäfer, Institut für Physikalische Chemie der RWTH, Templergraben 59, D-5100 Aachen.

tube. The reference electrode of the restrained-flow type, which allowed a discontinuous renewal of the liquid junction, has been previously described 9 . The reproducibility was ± 2 mV.

Urea (analytical grade; Merck) and NMA (purum, 0.05% acetic acid; Merck) were used without further purification. The solutions containing the amides were freshly prepared. With regard to the H⁺ response of glass electrodes the $p_{\rm H}$ of all solutions was raised by addition of KOH or LiOH. The NMA solutions were made $10^{-3}\,{\rm M}$ in KOH or LiOH in order to neutralize the acetic acid and to reach a $p_{\rm H}$ region where the titration curves are flat. Table 1 shows the $p_{\rm H}$ values of the examined solutions as a function of their composition.

Table 1. $p_{\rm H}$ values of alkaline KCl and LiCl solutions in the absence and in the presence of 4 M urea or 4 M NMA.

$\frac{c_{\text{K}}^+,\text{Li}^+}{\text{mol } 1^{-1}}$	$\frac{c_{\mathrm{OH}}^{-}}{\mathrm{mol}\;\mathrm{l}^{-1}}$	no amide	urea	NMA
10-2	10-3	11.0	11.3	11.1
10^{-3}	10^{-3}	11.0	11.3	11.1
10^{-2}	10-4	9.3	9.8	
10^{-3}	10^{-4}	9.3	9.8	

Results and Discussion

The results of the activity measurements are summarized in Table 2. Within the experimental error the activity of K^+ is not affected by 4 M urea at $p_{\rm H}$ 9.8 and 11.3. With Li⁺ a decrease of the activity appears which seems to exceed the experimental uncertainty. Additional measurements in 8 M urea solutions at $p_{\rm H}$ 10.1 yielded shifts of + 3.0 and

Table 2. Potential shifts (in mV) and activity ratios (in parantheses) of K^+ and Li^+ in the presence of 4 M urea or 4 M NMA. Positive shifts are related to an increase in activity compared with the corresponding amide free solutions and vice versa. The activity ratio is given by a'/a'', where ' and '' denote the activity ratio is given by a'/a'', where ' and '' denote the activity in the presence and in the absence of amide (ion activities were calculated by the Kielland method 10).

$\frac{c_{\text{K}}^+,\text{Li}^+}{\text{mol l}^{-1}}$	$\frac{c_{\mathrm{OH}}^{-}}{\mathrm{mol}\ \mathrm{l}^{-1}}$	urea K ⁺	urea Li ⁺	NMA K ⁺	$_{\mathrm{Li}^{+}}^{\mathrm{NMA}}$
10-2	10-3	-2.3	-4.6 (0.83)	+21.9 a (2.1)	+12.8 (1.7)
10^{-3}	10^{-3}	-1.6	-4.0 (0.85)	+25.1 a (2.6)	+25.7 (2.8)
10^{-2} 10^{-3}	10^{-4} 10^{-4}	$-0.9 \\ -0.1$	(0.00)	(2.0)	(2.0)

a These values were corrected with regard to the sub-Nernstian behaviour of the K⁺ electrode in alkaline solutions.

108 Notizen

-8.8 mV for K⁺ and Li⁺, respectively. On assuming that with K⁺ the shift merely reflects an effect of the medium, we may conclude that Li⁺ associates with urea.

In the presence of NMA a considerable increase of the activities of K⁺ and Li⁺ is observed. This finding falls in line with activity measurements on salts in pure NMA reported by Wood et al. ¹¹ and may be due to the extraordinarily high dielectric constant of the amide. With the solutions containing K⁺ nearly the same e.m.f. shifts are obtained. This behaviour implies absence of an electrode malfunction caused by interfering ions.

The e.m.f. shifts in the case of Li⁺ strongly depend on the Li⁺ concentration. With the solution containing 10⁻² M Li⁺ the shift is essentially lower

than with 10^{-2} M K⁺. As the Na⁺ electrode is $10^2 - 10^3$ times more sensitive to Na⁺ than to Li⁺ 1², a Na⁺ interference is possible. Taking into account that the presence of Na⁺ can only raise the e.m.f. shift, we need not exclude an association of Li⁺ with NMA at the 10^{-2} M level. Therefore our result is consistent with those of the authors mentioned above. Finally, it may be noted that a concentration dependent shift can be caused by a cooperative interaction between Li⁺ and NMA in which the competition for available ligands forces the electrolyte to associate with the amide. This explanation has been applied to amide solutions containing more than 5 M LiCl ¹³.

The author wishes to thank Prof. Dr. H. Schönert for helpful discussions.

- ¹ J. Bello and H. R. Bello, Nature 190, 440 [1961].
- ² J. Bello, D. Haas, and H. R. Bello, Biochem. 5, 2539 [1966].
- ³ G. Barone, V. Crescenzi, and F. Quadrifoglio, Biopolymers 4, 529 [1966].
- ⁴ J. Kurtz and W. F. Harrington, J. Mol. Biol. 17, 440 [1966].
- ⁵ C. B. Baddiel, D. Chaudhuri, and B. C. Stace, Biopolymers 10, 1169 [1971].
- ⁶ M. E. Noelken, Biochem. 9, 4117, 4122 [1970].

- ⁷ D. Balasubramanian, A. Goel, and C. N. R. Rao, Chem. Phys. Letters 17, 482 [1972].
- O. F. Schäfer, Anal. Chim. Acta 87, 495 [1976].
 O. Schäfer, Colloid Polym. Sci. 254, 628 [1976].
- ¹⁰ J. Kielland, J. Amer. Chem. Soc. **59**, 1675 [1937]
- ¹¹ R. H. Wood, R. K. Wicker, II, and R. W. Kreis, J. Phys. Chem. **75**, 2313 [1971].
- ¹² H. Dutz, Glastechn. Ber. 39, 139 [1966].
- D. Balasubramanian and R. Shaikh, Biopolymers 12, 1639 [1973].