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A new semi-classical equation of motion is suggested for
the radiating electron. The characteristic length of the new
theory is the Compton wavelength 4. (=#%/2mc) instead
of the classical electron radius re (=222 m = }: Ac),
which is used in all purely classical theories of the radiating
electron. However, the lowest order approximation of the
radiation reaction contains only the classical radius re .

In a recent paper !, we have investigated a non-
local equation of motion for the radiating electron,
and we have found quite agreeable properties of
this new equation: there are neither runaway solu-
tions nor pre-acceleration (i.e. acceleration before
a force is switched-on), and a retarding friction
force due to radiation reaction is always present
even in one-dimensional, unlimited, constant force
fields, where as well the Lorentz-Dirac equation as
that of Mo and Papas do not exhibit the effect of
radiation damping .

Nevertheless, two points are inherent in the new
theory, which call for further improvement: the
first one is the fact, that there exists still causality
violation 2 in the sense, that the acceleration at a
certain time is determined not only by the force at
that same time but also by future forces. Though
this causality violation is less severe than in the
Lorentz-Dirac theory?, it seems possible to remove
this deficiency by a certain modification of the new
equation of motion.

The second point, which we intend to improve
hereafter refers to an argument, which can be ap-
plied against every classical theory of the radiating
electron. In such a theory, the characteristic length
dimension in the equation of motion is the classical
electron radius r. defined by

Mexp €2 =2%[2r,. (1)

The range of non-local effects is determined by this
length parameter. But if one thinks of quantum
mechanics, the decisive length parameter in the de-
scription of the electron should be the Compton
wavelength 7,
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which is roughly 137 times the classical radius r,
Z’he=a=1/137 (3)
(e« ...Sommerfeld’s fine structure constant).

This suggests that the non-locality parameter in the
equation of motion in demand should have the order
of magnitude of the Compton wavelength /. instead
of the classical radius r .

These two heuristic considerations have led us to
propose the following equation of motion for the
semi-classical radiating electron

Myech ¢ ﬂ'i + Mg 62 {;{" - (u ;) h"j‘] = Ki . (4)

Here, my,..;, designates that part of the mass of the
electron, which cannot be identified with the mass
equivalent of the classical Coulomb field energy.
May be, my,.q, is completely of non-electromagnetic
nature or explainable only in the framework of
quantum electrodynamics. The mass m,, is the mass
equivalent of the classical Coulomb field surround-
ing the electron. The non-locality appears in the new
Eq. (4) in the form of a shifted four-acceleration:
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The mechanical part m,.., ¢?#* does not contain
the non-local effect
a}. . _du_*_
ds
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({w} ... four-velocity with wu; = +1; s...proper
time). So we see that only the electromagnetic part
exhibits a retarded response to the external force,
but clearly a more detailed elaboration of this point
is left for future work. Of course, we choose the non-
locality parameter ¢ to be in the order of magnitude
of the Compton wavelength Z.: 6 = /.. For the sake
of preliminary definiteness, let us choose

o=44. (6)

Now we shall try to find the lowest order ap-
proximation of the new non-local Equation (4). In
case of a trajectory, for which the unit tangent vec-
tor {u*} does not change appreciably during proper
time intervals of order g, we can expand the shifted
four-acceleration {#*} as

ai = a':'u_'s -g) = uil.-;'l —0 &il's. + 0(.«3; . (?)

Hence, Eq. (4) becomes in this approximation
(Mpech + M) € it — myy 2o [t + (au)u] =K*.
(8)
Since we put {K*} to be the usual Lorentz force
K'=ZFry,, (9)
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Eq. (8) is just the Lorentz-Dirac equation of mo-
tion, if we require the constraint

Mg CEC‘= 3 22. (10]
Thus
- 72 Z2 1] ”
elC =22, "~ "2 = 137 T (1)

which means that the electromagnetic mass m, is
roughly 1/137 of the experimental mass m.,y,,
where

m,.xl, = Myech - mg .

(12)

However, we know that the Lorentz-Dirac equa-
tion (8) with condition (10) does have solutions, for
which the unit tangent vector {u*} changes con-
siderably over a proper time interval of length r.
(those are the runaway solutions and the pre-accel-
erative part of an otherwise reasonable solution).
Therefore, in order to have a meaningful local ap-
proximation, we insert the neutral particle limit

Moy 2t =Z Fy, , (13)
into the Lorentz-Dirac equation (8) and obtain

Moxp it —3r2 {F“F' u, + (F* F°, u, u,) u*}

—ZFu,. (14)
Here, we have omitted a term of the form
$Zr.Fiu,, (15)

because the variation of the external field over a
proper time interval of length r. must be very small
otherwise we would not have the unit tangent vector
{u'} vary very little over time intervals of order
o= 137r,.

For one-dimensional motion, however, the vector
in brackets of Eq. (14) vanishes and therefore the
term (15) should not be omitted in this case. With
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the usual substitution

{u'} = {Cosh w; 0, 0, Sinh w} (16)
one gets then (F% : = E)
Mup v =ZEq+4Zr.dEy[ds. (17)

This equation agrees with the non-covariant semi-
classical result of Moniz and Sharp* [cf. their for-
mula (12)]. Clearly, higher order approximations
would not only involve the classical radius r. but
also the Compton wavelength 7. .

Finally, let us write the semi-classical equation of
motion (4) in one-dimensional form

2 .
Myech € Wis

(18)
+ M € (s q) Cosh [wig —wi_p] =Ky .

I'rom here it is seen easily that the invariant ac-
celeration at a certain time s does not depend from
the future values of the “velocity” w,,, rather from
the past and simultaneous values of w ), and there-
fore causality violation seems to be excluded in con-
trast to the former model !. Clearly, this point re-
quires further analysis in the future.

The free equation (18) (K 5 = 0)

ﬁ"‘-x"- + [nrvl/mmm'h] W(s - o) C‘Jﬁh [ﬂ-’ §) — Wiz - n}] =0
(19)

suggests damped oscillations as solutions, because
if (meo/meq)Cosh[w g, —wi_ ] <1 is valid for an
initial interval, then the acceleration  at s is op-
posite in sign and smaller in amount with respect to
2, for all times s following the initial interval.
These oscillations can be interpreted as those of the
coupled mechanical (my.s) and electromagnetic
(m,)) subsystems constituting the “electron™ 3,

The new semi-classical equation of motion (4)
seems to be a very promising one in various aspects
and shall be studied further.
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