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A new semi-classical equation of motion is suggested for 
the radiating electron. The characteristic length of the new 
theory is the Compton wavelength Ac ( = ̂ /2 m c) instead 
of the classical electron radius rc (=Z2/2 m c~ « j iy  ̂ c)> 
which is used in all purely classical theories of the radiating 
electron. However, the lowest order approximation of the 
radiation reaction contains only the classical radius rc .

In a recent paper 1, we have investigated a non­
local equation of motion for the radiating electron, 
and we have found quite agreeable properties of 
this new equation: there are neither runaway solu­
tions nor pre-acceleration (i. e. acceleration before 
a force is switched-on), and a retarding friction 
force due to radiation reaction is always present 
even in one-dimensional, unlimited, constant force 
fields, where as well the Lorentz-Dirac equation as 
that of Mo and Papas do not exhibit the effect of 
radiation damping

Nevertheless, two points are inherent in the new 
theory, which call for further improvement: the 
first one is the fact, that there exists still causality 
violation2 in the sense, that the acceleration at a 
certain time is determined not only by the force at 
that same time but also by future forces. Though 
this causality violation is less severe than in the 
Lorentz-Dirac theory 3, it seems possible to remove 
this deficiency by a certain modification of the new 
equation of motion.

The second point, which we intend to improve 
hereafter refers to an argument, which can be ap­
plied against every classical theory of the radiating 
electron. In such a theory, the characteristic length 
dimension in the equation of motion is the classical 
electron radius rc defined by

mcxvc2 = Z2/2 rc . (1)

The range of non-local effects is determined by this 
length parameter. But if one thinks of quantum 
mechanics, the decisive length parameter in the de­
scription of the electron should be the Compton 
wavelength

/„ = 2 mc Z2 Tn (2)
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which is roughly 137 times the classical radius rc
Z2/h c  = a «  1/137 (3)

(a . . . Sommerfeld's fine structure constant).

This suggests that the non-locality parameter in the 
equation of motion in demand should have the order 
of magnitude of the Compton wavelength 2C instead 
of the classical radius rc .

These two heuristic considerations have led us to 
propose the following equation of motion for the 
semi-classical radiating electron

mmech C2 + me\ c2 [ilK — (U Ü) u = Kx. (4)

Here, mmech designates that part of the mass of the 
electron, which cannot be identified with the mass 
equivalent of the classical Coulomb field energy. 
May be, mmech is completely of non-electromagnetic 
nature or explainable only in the framework of 
quantum electrodynamics. The mass me\ is the mass 
equivalent of the classical Coulomb field surround­
ing the electron. The non-locality appears in the new 
Eq. (4) in the form of a shifted four-acceleration:

~, . d uxüK : = -
ds

The mechanical part m 
the non-local effect

inech

(5)

does not contain

— dux 
ds

({li'1} . . . four-velocity with uxû  = + 1; s . . . proper 
time). So we see that only the electromagnetic part 
exhibits a retarded response to the external force, 
but clearly a more detailed elaboration of this point 
is left for future work. Of course, we choose the non- 
locality parameter o to be in the order of magnitude 
of the Compton wavelength a « / c , For the sake 
of preliminary definiteness, let us choose

o = |A c . (6)

Now we shall try to find the lowest order ap­
proximation of the new non-local Equation (4). In 
case of a trajectory, for which the unit tangent vec­
tor does not change appreciably during proper 
time intervals of order a, we can expand the shifted 
four-acceleration as

(7)ü \s _ a) = ü \ s) -  o ü \ s) + 0 (<0
Hence, Eq. (4) becomes in this approximation

(mmech + mel) °2 — me\ °2 0 + ") = ^  •
(8)

Since we put {K*} to be the usual Lorentz force
Kx = Z F"x utl, (9)
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Eq. (8) is just the Lorentz-Dirac equation of mo­
tion, if we require the constraint

me\ c2 a = § Z2 . (10)
Thus

Z- Z2 1
m<ic = 2 x r = a 2 7 : ~ 1 3 7 mexp (11)

which means that the electromagnetic mass me\ is
roughly 1/137 of the experimental mass mexp, 
where

mexp = m,nech + me\ • (12)
However, we know that the Lorentz-Dirac equa­

tion (8) with condition (10) does have solutions, for 
which the unit tangent vector {a/} changes con­
siderably over a proper time interval of length rc 
(those are the runaway solutions and the pre-accel- 
erative part of an otherwise reasonable solution). 
Therefore, in order to have a meaningful local ap­
proximation, we insert the neutral particle limit

mexp c2 ül = Z F"xUfl, (13)

into the Lorentz-Dirac equation (8) and obtain 
mexp c2ü"~ f  t 2 {Ffd F \  u„ + {F" F \  u„ ua) u' }

= Z F"x uß . 

Here, we have omitted a term of the form 

i Z r J ^ u , ,

(14)

(15)
because the variation of the external field over a 
proper time interval of length rc must be very small 
otherwise we would not have the unit tangent vector 
{ux} vary very little over time intervals of order
o ä; 137 rc .

For one-dimensional motion, however, the vector 
in brackets of Eq. (14) vanishes and therefore the 
term (15) should not be omitted in this case. With

the usual substitution
= {Cosh w; 0,0, Sinhu;} (16)

one gets then (F03 : = E)
mexpc2w(s) =Z  E(s) + § Z rc dE(s)/ds . (17)

This equation agrees with the non-covariant semi- 
classical result of Moniz and Sharp 4 [cf. their for­
mula (12)]. Clearly, higher order approximations 
would not only involve the classical radius rc but 
also the Compton wavelength .

Finally, let us write the semi-classical equation of 
motion (4) in one-dimensional form
mmech C2 W(s) (18)

-f me\ c2 u>(s_o) Cosh [w(S) -  W(s_o)] = K(s) •
From here it is seen easily that the invariant ac­
celeration at a certain time s does not depend from 
the future values of the "velocity" u>(s), rather from 
the past and simultaneous values of wis), and there­
fore causality violation seems to be excluded in con­
trast to the former model1. Clearly, this point re­
quires further analysis in the future. 

The free equation (18) (K<s) =  0)
w(s) + (mei/mmech) W(s-a) Cosh -  w(s_a)] = 0

(19)
suggests damped oscillations as solutions, because 
if (mpi/mech)Cosh[w(s) — W(s^a)] <1  is valid for an 
initial interval, then the acceleration w at s is op­
posite in sign and smaller in amount with respect to 
W(s-o) f°r all times s following the initial interval. 
These oscillations can be interpreted as those of the 
coupled mechanical (mmech) and electromagnetic 
(mei) subsystems constituting the "electron"

The new semi-classical equation of motion (4) 
seems to be a very promising one in various aspects 
and shall be studied further.
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