Notizen

Phase Diagrams of Binary Mixtures of Phenylenediamines and Dihydroxybenzenes

M. S. Dhillon §

Department of Chemistry, Guru Nanak Dev University, Amritsar, India

(Z. Naturforsch. 32 a, 98-100 [1977]; received November 12, 1976)

Solid — liquid equilibria for o-phenylenediamine + resorcinol, m-phenylenediamine + pyrocatechol, + resorcinol and p-phenylenediamine + pyrocatechol, + resorcinol have been studied by the thaw-melt method. The types and melting temperatures of the complexes formed in theses mixtures were ascertained from the phase diagrams.

Introduction

Solid – liquid equilibrium data of mixtures of phenylenediamines with naphthols, nitrophenols, phenol and hydroquinone have been reported earlier $^{1-4}$. In this paper we report corresponding data for mixtures of phenylenediamines with 1,2-dihydroxybenzene (pyrocatechol) and 1,3-dihydroxybenzene (resorcinol). The study of solid – liquid equilibria is one of the best tools to investigate the formation of complexes in condensed phase and provides information about the type and melting temperature of the complex.

Experimental

o-, m-, and p-Phenylenediamines were boiled with alcohol and activated charcoal, filtered while hot and repeatedly crystallized from alcohol. Pyrocatechol and resorcinol (B.D.H.) were fractionally crystallized from alcohol and distilled under vacuum. The purities of the samples were checked by determining the melting temperatures, which agreed to within 0.01 K with the corresponding values in the literature ^{5, 6}.

Mixtures of various compositions were made in Rast tubes by weight. Each mixture was heated just above the melting temperature of the higher melting component in an oil bath, suddenly cooled in ice and ground. The procedure was repeated three to four times. The phase equilibria were studied by the thaw-melt method ^{7, 8}. The heating and cooling rates were controlled to about 0.1 K min⁻¹. The temperatures were measured with a calibrated mercury-inglass thermometer. The results are correct and reproducible to within 0.1 K. Checks by the method of thermal analysis⁹ gave the same results to within 0.1 K.

Results and Discussion

The results are recorded in Table 1 and are plotted in Figs. 1 to 5. It is evident from the figures that the systems studied show congruent melting

Table 1. Solid - liquid equilibrium data of the mixtures.

	p. 73.15	mp. 73.15		p. 73.15	mp. 73.15
	-2	6 te -2		em - 2	= 2 − 2
	K) w t	K) ti		K) w t	Kin (
x	Tha (T/)	Mel $(T/)$	x	Tha (T/)	${ m Mel}_{(T/)}$
	x o-phen	ylenedia	mine + $(1-x)$ r	esorcinol	
0.0000		110.0	0.5161	47.1	51.8
0.0612	48.5	104.4	0.5824	47.0	51.8
0.1386	48.4	98.6	0.6266	47.1	48.0
0.2129	48.5	88.4	0.6670	47.2	61.7
0.2876	48.6	75.6	0.7246	47.2	70.0
0.3394	48.5	64.8	0.8134	47.0	83.6
0.3880	48.5	52.4	0.9206	47.1	93.5
0.4198 0.4872	48.4	49.2 51.6	0.0000		103.0
	x m-pheny	lenediar	nine + $(1-x)$ py	rocatecho	1
0.0000		103.0	0.5416	41.4	66.7
0.1022	58.4	97.5	0.6431	41.4	66.5
0.1876	58.6	90.4	0.7388	41.5	66.0
0.2431	58.5	82.6	0.8149	41.5	50.6
0.3094	58.5	73.7	0.8782	41.4	44.3
0.4425	58.6	62.1	0.9431	41.5	48.9
0.5046	58.6	64.9	1.0000		63. 8
	x m-phen	ylenedia	amine + $(1-x)$ r	esorcinol	
0.0000	_	110.0	0.4886	52.2	79.1
0.0871	52.0	101.0	0.5492	31.5	79.1
0.1436	52.2	90.4	0.6225	31.6	70.3
0.1879	52.1	81.6	0.7060	31.5	60.1
0.2446	52.0	70.2	0.7580	31.0	42.4
0.2791	52.0	59.2 62.1	0.8396	31.5	43.8
0.3241	52.1	70.0	1,0000	51.0	58.0 63.9
0.4346	52.2	78.5	1.0000	_	05.0
	x p-pheny	lenedian	nine + $(1-x)$ py	rocatechol	
0.0000	_	103.0	0.4775	100.4	108.4
0.0412	89.4	100.8	0.5836	100.3	102.5
0.0878	89.6	94.6	0.6516	100.3	105.4
0.1224	89.5	91.8	0.7324	100.4	111.3
0.1801	89.5	95.6	0.8176	100.3	119.6
0.2319	89.4	102.4	0.9234	100.4	129.8
0.2906	89.5	108.5	1.0000		140.0
0.3804	89.6	109.3			
0.0000	x p-phen	ylenedia	mine + $(1-x)$ re	esorcinol	110.0
0.0000	04.7	102.0	0.5876	102.2	102.7
0.0596	94.7	07.2	0.0532	102.3	108.7
0.1200	94.8	97.5	0.7214	102.3	190.7
0.1077	94.0	104.2	0.8722	102.2	120.0
0.2352	94.8	109.0	0.0733	102.5	133.6
0.4205	94.7	113.2	1 0000		140.0
0.5104	102.3	118.5	1.0000		

S Present adress: Institut f
ür Makromolekulare Chemie, Albert-Ludwigs Universit
ät, Stefan-Meier Straße 31, D-7800 Freiburg i. Br., West Germany.

Fig. 1. Phase diagram of x o-phenylenediamine + (1-x) resorcinol. $\bigcirc \bigcirc \bigcirc$ Melting temperature; $\Box \Box \Box$ thaw temperature.

Fig. 2. Phase diagram of x m-phenylenediamine + (1-x) pyrocatechol. $\bigcirc \bigcirc \bigcirc$ Melting temperature; $\Box \Box \Box$ thaw temperature.

Fig. 3. Phase diagram of x m-phenylenediamine + (1-x) resorcinol. $\bigcirc \bigcirc \bigcirc$ Melting temperature; $\Box \Box \Box$ thaw temperature.

temperatures indicating the formation of complexes. The formulae of the complexes and the melting temperatures are reported in Table 2.

The heat of fusion of the addition compound $A_{r_1}B_{r_2}$ formed between the species A and B can be estimated from the freezing curve between the two

Fig. 4. Phase diagram of x p-phenylenediamine + (1-x) pyrocatechol. $\bigcirc \bigcirc \bigcirc$ Melting temperature; $\Box \Box \Box$ thaw temperature.

Fig. 5. Phase diagram of x p-phenylenediamine + (1-x) resorcinol. $\bigcirc \bigcirc \bigcirc$ Melting temperature; $\Box \Box \Box$ thaw temperature.

eutectic temperatures from the relation

$$\frac{1}{T} = -\frac{R}{\Delta_{\rm f} h} \ln (x_{\rm A})^{r_1} (x_{\rm B})^{r_2}$$
(1)
+ $\frac{R}{\Delta_{\rm f} h} \ln (x_{\rm A})_{\rm c}^{r_1} (x_{\rm B})_{\rm c}^{r_2} + \frac{1}{T_{\rm c}} \dots$

where $\Delta_{\rm f} h$ is the heat of fusion of the addition compound, $T_{\rm c}$ its melting temperature and $x_{\rm A,B}$ and $(x_{\rm A,B})_{\rm c}$ the mole fractions of the species A, B at the temperatures T and $T_{\rm c}$. ν_1 and ν_2 are the integers. The plots of $1/T - 1/T_{\rm c}$ against $-\ln(x_{\rm A})^{\nu_1}(x_{\rm B})^{\nu_2}$ showed large deviations from linearity, indicating

Table 2. Melting temperatures and formula of the complexes.

System 7 c o-phenylenediamine+resorcinol 1	Гуре of	Melting
o-phenylenediamine+resorcinol 1	complex	temp./K
m-phenylenediamine + pyrocatechol 1 m-phenylenediamine + resorcinol 1 p-phenylenediamine + pyrocatechol 1 p-phenylenediamine + resorcinol 1	l - 1 l - 1 l - 1 l - 2 l - 1	324.95 339.85 352.25 382.45 391.65

that these mixtures are far from being idealy associated, and that the heats of fusion of the complexes can not be determined by this method. The formation of complexes in the solid phases of these mixtures is presumably due to hydrogen bonding between the NO₂-groups of the diamines and the OH-groups of the dihydroxybenzenes.

The NH_2 -groups being farest away from each other in p-phenylenediamine, this molecule appears to be able to form a 1-2 complex with pyrocate-

- ¹ M. S. Dhillon, J. Chem. Thermodynamics 7, 1085 [1975].
- ² M. S. Dhillon and S. P. Singh, Thermochimica Acta 15, 248 [1976].
- ³ M. S. Dhillon and R. K. Nigam, Ind. J. Chem. 13, 615 [1975].
- ⁴ M. S. Dhillon and G. S. Dhillon, Thermochimica Acta 18, [1977] (in press).
- ⁵ J. Timmermans, Physico-Chemical Constants of Pure Organic Compounds, Elsevier Pub. Co., New York 1964.

chol. This is not the case with resorcinol, probably because its more distant OH-groups, as compared to pyrocatechol, interact with both NH_2 -groups of p-phenylenediamine.

The author acknowledges his thanks to Professor Dr. A. Klemm for necessary changes in the manuscript, to the German Academic Exchange Service, Bonn for the award of a fellowship and to Guru Nanak Dev University Amritsar for leave of absence.

- ⁶ R. C. Weast, Handbook of Chemistry and Physics, The Chem. Rubber Co., 1972.
- ⁷ R. P. Rastogi and R. K. Nigam, Proc. Nat. Inst. Sci. 26, 184 [1960].
- E. F. Pounder and I. Masson, J. Chem. Soc. 1934, 1357.
 R. P. Rastogi and R. K. Nigam, Trans. Faraday Soc. 55, 2009 [1959].