Mass Dependence of the Vibrational Eigenvector Matrix Elements in $XY_2(C_{2v})$ Type Molecules

T. R. Ananthakrishnan
Department of Physics, St. Paul's College, Kalamassery, India
and C. P. Girijavallabhan and K. Babu Joseph
Department of Physics, University of Cochin, India

(Z. Naturforsch. 31a, 1009-1010 [1976];
received April 12, 1976)

Interesting linear relationships (one for hydrides and another for nonhydrides) are found to exist between a certain parameter c characterising the vibrational eigenvector matrix L and the mass ratio m_Y/m_X in the case of bent symmetric XY_2 type molecules with small mass coupling.

The variation of the ratio L_{12}/L_{21} of the eigenvector matrix elements with mass coupling defined as G_{12}/C_{12} in vibrational problems of order two in molecular types $XY_2(C_{2v})$, $XY_3(D_{3h})$ and $XY_4(T_d)$ has been recently analysed by Müller et alii. The points thus defined lie along a straight line in the case of molecules of XY_2 type possessing large mass coupling (e.g. N_2O, NF_2, OF_2, CF_2 etc.). For molecules with relatively small mass coupling (e.g. ClO_2, SO_2, H_2O, H_2Se etc.) the points do not lie along the line.

For molecules with small mass coupling, the L matrix approximation ($L_{12}=0$) is known to give a reasonable set of force constants. In such cases, the elements of the matrix $L=L_0$ can easily be calculated from the G matrix employing the Wilson condition $L\bar{L}=G$. However, to represent the actual case, one may write

$$L=L_0 C$$ \hspace{1cm} (1)

where C is an orthogonal matrix. Defining C as

$$C=\frac{1}{\sqrt{1+c^2}} \begin{bmatrix} 1 & c \\ -c & 1 \end{bmatrix}$$ \hspace{1cm} (2)

one may expect the deviation of the parameter c from zero to reflect the deviation of the matrix L from L_0 in the actual case.

Recently, a criterion based on the minimisation of the average bending energy has been found to hold extremely well in fitting the actual force fields of $XY_2(C_{2v})$ type molecules obtained with the help of sensitive additional data like isotopic frequencies and Coriolis coupling constants. Values of the parameter c in these cases, when plotted directly against the mass ratio m_Y/m_X, indicate an interesting linear relationship as shown in Figure 1. Thus, for molecules with small mass coupling also certain regularities between the L matrix elements and the mass ratio can be established.

One interesting feature of this graph is that all the c values are positive for nonhydrides and negative for hydrides.

In a very recent work by Swetharanyam and Ramaswamy it has been reported that a linear relationship between a similar parameter $\Phi=(\tan^{-1}c)$ and the cube root of mass ratios exists in the case of $XY_4(T_d)$ type molecules. Since it is impossible to pinpoint the force field or the c values by virtue of the inherent spreads in the experimental values as well as errors due to anharmonicity, the observations of such regularities in the values of L_{12}/L_{21} or c with molecular structures are bound to help refinement of our knowledge of many of the molecular constants. A very interesting result arising from such observations is that the L_{ij} elements show almost complete dependence upon molecular geometry and atomic masses at least in such simple cases.

Reprint requests to Dr. C. P. Girijavallabhan, Department of Physics, University of Cochin, Cochin 682022, India.

7 C. P. Girijavallabhan, S. Sasidharan Nair, and K. Babu Joseph, J. Mol. Spectrosc. 61, 177 [1976].