Isotope Effect in the Knight Shift of Potassium

W. Sahm and A. Schwenk

Physikalisches Institut der Universität Tübingen, West Germany

(Z. Naturforsch. 30a, 1495 - 1496 [1975]; received August 30, 1975)

The Knight shifts of the potassium isotopes 39K and 41K were determined with high accuracy: $K^{(39)} = 0.274 35(10)\%$ and $K^{(41)} = 0.274 93(12)\%$. The relative isotope effect $\Delta K/K = -0.210 (20)\%$ is in agreement with the hyperfine structure anomaly $^{39}A^{41}$. Isotope effects in the Knight shift are known for three metals: 61Li/7Li1, 85Rb/87Rb2, and 107Ag/109Ag3. Another suitable isotopic pair is 39K/41K. To our knowledge no Knight shift has been measured for 3Rb/107Rb, and 87Rb/109Rb three metals: 85Ag/87Li2/109K. The reason for this may be the very weak NMR signal of 39K and 41K in metallic potassium. The ratio of the Larmor frequencies of 39K was measured in the metallic sample and the reference sample (31 molal solution of KNO$_3$ in D$_2$O) was $\nu(\nu^{(39)}K_{\text{met}})/\nu(\nu^{(39)}K_{\text{ref}}) = 1.0026413 (4)$. The error given here is three times the r.m.s. error resulting from 22 measurements at different days. The shift between the reference sample and K^{+}-ions at infinite dilution is $\delta = -3.0 (2)\,$ppm.5

The Knight shift $K^{(39)}_{\text{ion}}$ (referred to the K^{+}-ion in aqueous solution at infinite dilution) is therefore $K^{(39)} = 0.26383 (6)\%$.

With the shielding constant $\sigma = -0.01052 (8)\%$ from,5 which describes the shielding of the K^{+}-ion by the surrounding water molecules, the Knight shift referred to the free atom is $K_{at}^{(39)} = K_{ion}^{(39)} - \sigma^{*}$: $K^{(39)} = 0.27435 (10)\%$.

The Knight shift of 41K was not directly determined as the NMR signal of this nucleus is weaker by a factor 82 than that of 39K. The ratio of the Larmor frequencies of 39K and 41K was measured in the metallic sample with high accuracy: $R_{\text{met}}^{(39)} = \nu(\nu^{(39)}K_{\text{met}})/\nu(\nu^{(41)}K_{\text{met}}) = 1.8218626 (5)$.

The error is three times the r.m.s. error of 22 measurements.

Together with the ratio of the Larmor frequencies determined in different aqueous solutions of potassium salts5: $R_{sol}^{(39)} = \nu(\nu^{(39)}K_{sol})/\nu(\nu^{(41)}K_{sol}) = 1.8218731 (9)$ the difference of the Knight shifts of 39K and 41K may be evaluated:

$$\Delta K = K_{at}^{(39)} - K_{at}^{(41)} = K_{ion}^{(39)} - K_{ion}^{(41)} = (1 - R_{sol}/R_{\text{met}}) (1 + K_{ion}^{(41)}) = -5.8 (6)\,$ppm .

Now the Knight shifts of 41K are $K^{(41)} = 0.26441 (9)\%$ and $K^{(41)} = 0.27493 (12)\%$. Provided that the factor $(|\psi_F(0)\rangle^2)_{\Lambda V}/|\psi_\Lambda(0)\rangle^2$ in the well known Knight shift formula6 is independent of the nuclear properties of different isotopes of the metal, for s electrons any fractional difference in Knight shift for the two isotopes should be equal to their hyperfine structure anomaly (see e.g.5): $(K^{(41)} - K^{(2)})/K^{(2)} = 1\Delta^2$. The influence of the inhomogeneity of the field B_0 on the shapes and widths of the measured NMR lines is relatively small. The half-widths of the measured absorption curves of metallic potassium were corrected for this effect in a manner described in8; the corrected half-widths are $\Delta v_{\text{c}}(39)K = (45 \pm 5)\,$Hz, $\Delta v_{\text{c}}(41)K = (46 \pm 6)\,$Hz.

To our knowledge these are the narrowest NMR lines observed in metallic samples. An anisotropy...
For the potassium isotopes there is the fractional difference
\[\frac{\Delta K}{K_{41}} = -0.210(20)\% \]
and the hyperfine structure anomaly
\[^{39}A_{41} = -0.22934(5)\% \]
from Ref. 5. Within the limits of error there is agreement of these values.

Blumberg et al. 2 have pointed out the agreement of the fractional difference of the Knight shifts and the Hfs-anomaly for the alcali isotopes \(^{85}\text{Rb}\) and \(^{87}\text{Rb}\), whereas there is a striking discrepancy of those quantities for the noble metal isotopic pair \(^{107}\text{Ag}\) and \(^{109}\text{Ag}\). 3.

We like to thank Prof. Dr. H. Krüger for his support of this work. We are very indebted to Dr. J. Kaufmann, Prof. Dr. O. Lutz and to Dr. A. Nolle for helpful discussions, and to Dipl.-Chem. W. Mayr who prepared the metallic samples.

We thank the Deutsche Forschungsgemeinschaft for the financial support.

4 A. Schwenk, Z. Phys. 213, 482 [1968].